Mutation in soybean Lox-2 PLAT/LH2 domain through CRISPR/Cas9 reduces seed lipoxygenase activity: responsible for undesirable flavour.

IF 2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Ekta Patel, Piyali Das, Somak Hazra, Manveer Sharma, Gautam Chhabra, Balwinder Singh Gill, Sucheta Sharma, Ajinder Kaur, Deepak Singla, Jagdeep Singh Sandhu
{"title":"Mutation in soybean Lox-2 PLAT/LH2 domain through CRISPR/Cas9 reduces seed lipoxygenase activity: responsible for undesirable flavour.","authors":"Ekta Patel, Piyali Das, Somak Hazra, Manveer Sharma, Gautam Chhabra, Balwinder Singh Gill, Sucheta Sharma, Ajinder Kaur, Deepak Singla, Jagdeep Singh Sandhu","doi":"10.1007/s11248-025-00447-8","DOIUrl":null,"url":null,"abstract":"<p><p>Soybean, a protein and oil rich legume is primarily used as livestock feed and to a lesser extent for human consumption due to undesirable flavour in the seeds caused by L-2 isozyme of lipoxygenase. Herein, soybean with reduced isozyme activity was developed through CRISPR/Cas9 targeted mutation in L-2 encoding Lox-2 gene. sgRNA designed from PLAT/LH2 domain in second exon of Lox-2 (Lox-2 E2) was validated by in vitro cleavage assay; inserted in CRISPR/Cas9 binary vector and used for genetic transformation of SL1074 cultivar hypocotyl segments. A total of 12 T<sub>0</sub> putative plants were identified through PCR. Amongst these, four revealed mutation at the target sgRNA site by CEL1 assay and substitution of a base A with G six bp upstream of PAM converting lysine to glutamic acid at 119 position. T<sub>1</sub> and T<sub>2</sub> seeds derived from mutant T0-37 plant showed upto 25.49% reduction in isozyme activity as compared to SL1074. The base substitution was confirmed in T<sub>1</sub> progeny; segregation analysis revealed homozygosity and heritability of mutation in T<sub>2</sub> plants. The interaction between structural models of SL1074, mutant domains and negatively charged substrates revealed strong binding affinity of the substrates with positively charged lysine in SL1074 domain due to formation of two hydrogen bonds. On the contrary, weak binding of the substrates with negatively charged glutamic acid in mutant domain and absence of hydrogen bond explained reduction of isozyme activity in T<sub>2</sub> seeds. The mutant soybean with reduced isozyme activity is an important source for introgressing the trait in plant breeding programs.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"34 1","pages":"29"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-025-00447-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Soybean, a protein and oil rich legume is primarily used as livestock feed and to a lesser extent for human consumption due to undesirable flavour in the seeds caused by L-2 isozyme of lipoxygenase. Herein, soybean with reduced isozyme activity was developed through CRISPR/Cas9 targeted mutation in L-2 encoding Lox-2 gene. sgRNA designed from PLAT/LH2 domain in second exon of Lox-2 (Lox-2 E2) was validated by in vitro cleavage assay; inserted in CRISPR/Cas9 binary vector and used for genetic transformation of SL1074 cultivar hypocotyl segments. A total of 12 T0 putative plants were identified through PCR. Amongst these, four revealed mutation at the target sgRNA site by CEL1 assay and substitution of a base A with G six bp upstream of PAM converting lysine to glutamic acid at 119 position. T1 and T2 seeds derived from mutant T0-37 plant showed upto 25.49% reduction in isozyme activity as compared to SL1074. The base substitution was confirmed in T1 progeny; segregation analysis revealed homozygosity and heritability of mutation in T2 plants. The interaction between structural models of SL1074, mutant domains and negatively charged substrates revealed strong binding affinity of the substrates with positively charged lysine in SL1074 domain due to formation of two hydrogen bonds. On the contrary, weak binding of the substrates with negatively charged glutamic acid in mutant domain and absence of hydrogen bond explained reduction of isozyme activity in T2 seeds. The mutant soybean with reduced isozyme activity is an important source for introgressing the trait in plant breeding programs.

Abstract Image

Abstract Image

Abstract Image

通过CRISPR/Cas9基因突变大豆Lox-2 PLAT/LH2结构域,降低种子脂氧合酶活性:导致不良风味。
大豆是一种富含蛋白质和油脂的豆科植物,主要用作牲畜饲料,由于脂肪加氧酶的L-2同工酶会使种子产生难闻的味道,因此很少用于人类食用。本文通过CRISPR/Cas9对编码Lox-2基因的L-2进行靶向突变,获得了同工酶活性降低的大豆。从Lox-2第二外显子PLAT/LH2结构域(Lox-2 E2)设计的sgRNA通过体外裂解实验验证;插入CRISPR/Cas9二元载体,用于SL1074栽培品种下胚轴片段的遗传转化。通过PCR共鉴定出12株植物。其中,有4个基因通过CEL1检测发现sgRNA靶位点突变,并在PAM上游6bp处用G取代碱基a,使赖氨酸在119位转化为谷氨酸。突变体T0-37的T1和T2种子同工酶活性较SL1074降低了25.49%。碱基置换在T1后代中得到证实;分离分析显示T2植株的突变具有纯合性和遗传力。SL1074结构模型、突变域和带负电荷底物之间的相互作用表明,底物与SL1074结构域中带正电荷的赖氨酸具有很强的结合亲和力,形成了两个氢键。相反,T2种子同工酶活性降低的原因是底物与带负电荷的谷氨酸在突变域的弱结合和缺乏氢键。同工酶活性降低的大豆突变体是植物育种中引入该性状的重要来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transgenic Research
Transgenic Research 生物-生化研究方法
CiteScore
5.40
自引率
0.00%
发文量
38
审稿时长
4-8 weeks
期刊介绍: Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities. Transgenic Research publishes -Original Papers -Reviews: Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged. -Brief Communications: Should report significant developments in methodology and experimental transgenic higher organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信