Yasong Wu, Binjie Zhou, Lu Liu, Shengnan Dai, Lirong Song, Jiong Yang
{"title":"Structural Characteristics and Recent Advances in Thermoelectric Binary Indium Chalcogenides.","authors":"Yasong Wu, Binjie Zhou, Lu Liu, Shengnan Dai, Lirong Song, Jiong Yang","doi":"10.34133/research.0727","DOIUrl":null,"url":null,"abstract":"<p><p>Thermoelectric (TE) materials have garnered widespread research interest owing to their capability for direct heat-to-electricity conversion. Binary indium-based chalcogenides (In-X, X = Te, Se, S) stand out in inorganic materials by virtue of their relatively low thermal conductivity. For example, In<sub>4</sub>Se<sub>2.35</sub> shows a low thermal conductivity of 0.74 W m<sup>-1</sup> K<sup>-1</sup> and an impressive <i>zT</i> value of 1.48 along the <i>b</i>-<i>c</i> plane at 705 K, as a result of structural anisotropy. Here, we review the structural features and recent research progress in the TE field for In-X materials. It begins by presenting the characteristics of crystal structure, electronic band structure, and phonon dispersion, aiming to microscopically understand the similarity/dissimilarity among these In-X compounds, notably the role of unconventional bonds (such as In-In) in modulating the band structures and lattice vibrations. Furthermore, TE optimization strategies of such materials were classified and discussed, including defect engineering, crystal orientation engineering, nanostructuring, and grain size engineering. The final section provides an overview of recent progress in optimizing TE properties of indium tellurides, indium selenides, and indium sulfides. An outlook is also presented on the major challenges and opportunities associated with these material systems for future TE applications. This Review is expected to provide critical insights into the development of new strategies to design binary indium-based chalcogenides as promising TE materials in the future.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0727"},"PeriodicalIF":11.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0727","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoelectric (TE) materials have garnered widespread research interest owing to their capability for direct heat-to-electricity conversion. Binary indium-based chalcogenides (In-X, X = Te, Se, S) stand out in inorganic materials by virtue of their relatively low thermal conductivity. For example, In4Se2.35 shows a low thermal conductivity of 0.74 W m-1 K-1 and an impressive zT value of 1.48 along the b-c plane at 705 K, as a result of structural anisotropy. Here, we review the structural features and recent research progress in the TE field for In-X materials. It begins by presenting the characteristics of crystal structure, electronic band structure, and phonon dispersion, aiming to microscopically understand the similarity/dissimilarity among these In-X compounds, notably the role of unconventional bonds (such as In-In) in modulating the band structures and lattice vibrations. Furthermore, TE optimization strategies of such materials were classified and discussed, including defect engineering, crystal orientation engineering, nanostructuring, and grain size engineering. The final section provides an overview of recent progress in optimizing TE properties of indium tellurides, indium selenides, and indium sulfides. An outlook is also presented on the major challenges and opportunities associated with these material systems for future TE applications. This Review is expected to provide critical insights into the development of new strategies to design binary indium-based chalcogenides as promising TE materials in the future.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.