Javier Hernández-Velasco, José Ciro Hernández-Díaz, Sergio Leonel Simental-Rodríguez, Juan P Jaramillo-Correa, David S Gernandt, José Jesús Vargas-Hernández, Ilga Porth, Roos Goessen, M Socorro González-Elizondo, Matthias Fladung, Cuauhtémoc Sáenz-Romero, José Guadalupe Martínez-Ávalos, Artemio Carrillo-Parra, Eduardo Mendoza-Maya, Arnulfo Blanco-García, Christian Wehenkel
{"title":"Causes of heterozygosity excess: The case of Mexican populations of <i>Populus tremuloides</i>.","authors":"Javier Hernández-Velasco, José Ciro Hernández-Díaz, Sergio Leonel Simental-Rodríguez, Juan P Jaramillo-Correa, David S Gernandt, José Jesús Vargas-Hernández, Ilga Porth, Roos Goessen, M Socorro González-Elizondo, Matthias Fladung, Cuauhtémoc Sáenz-Romero, José Guadalupe Martínez-Ávalos, Artemio Carrillo-Parra, Eduardo Mendoza-Maya, Arnulfo Blanco-García, Christian Wehenkel","doi":"10.1016/j.pld.2024.12.006","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of heterozygous individuals in a population is crucial for maintaining genetic diversity, which can positively affect fitness and adaptability to environmental changes. While inbreeding generally reduces the proportion of heterozygous individuals in a population, polyploidy tends to increase the proportion. North American <i>Populus tremuloides</i> is one of the most widely distributed and ecologically important tree species in the Northern Hemisphere. However, genetic variation in Mexican populations of <i>P. tremuloides</i>, including the genetic signatures of their adaptation to a variety of environments, remains largely uncharacterized. The aim of this study was to analyze how inbreeding coefficient (<i>F</i> <sub>IS</sub>) and ploidy are associated with clonal richness, population cover, climate and soil traits in 91 marginal to small, isolated populations of this tree species throughout its entire distribution in Mexico. Genetic variables were determined using 36,810 filtered SNPs derived from genome re-sequencing. We found that <i>F</i> <sub>IS</sub> was approximately between 0 and -1, indicating an extreme heterozygosity excess. One key contributor to the observed extreme heterozygosity excess was asexual reproduction, although ploidy levels cannot explain this excess. Analysis of all neutral SNPs showed that asexual reproduction was positively correlated with observed heterozygosity (<i>H</i> <sub>o</sub>) but negatively correlated with expected heterozygosity (<i>H</i> <sub>e</sub>). Analysis of outlier SNPs also showed that asexual reproduction was positively correlated with <i>H</i> <sub>o</sub> and negatively correlated with <i>H</i> <sub>e</sub>, although this latter correlation was not significant. These findings support the presence of a Meselson effect.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 3","pages":"415-428"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12146867/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2024.12.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of heterozygous individuals in a population is crucial for maintaining genetic diversity, which can positively affect fitness and adaptability to environmental changes. While inbreeding generally reduces the proportion of heterozygous individuals in a population, polyploidy tends to increase the proportion. North American Populus tremuloides is one of the most widely distributed and ecologically important tree species in the Northern Hemisphere. However, genetic variation in Mexican populations of P. tremuloides, including the genetic signatures of their adaptation to a variety of environments, remains largely uncharacterized. The aim of this study was to analyze how inbreeding coefficient (FIS) and ploidy are associated with clonal richness, population cover, climate and soil traits in 91 marginal to small, isolated populations of this tree species throughout its entire distribution in Mexico. Genetic variables were determined using 36,810 filtered SNPs derived from genome re-sequencing. We found that FIS was approximately between 0 and -1, indicating an extreme heterozygosity excess. One key contributor to the observed extreme heterozygosity excess was asexual reproduction, although ploidy levels cannot explain this excess. Analysis of all neutral SNPs showed that asexual reproduction was positively correlated with observed heterozygosity (Ho) but negatively correlated with expected heterozygosity (He). Analysis of outlier SNPs also showed that asexual reproduction was positively correlated with Ho and negatively correlated with He, although this latter correlation was not significant. These findings support the presence of a Meselson effect.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry