Reham M Nada, Abdel Hamid A Khedr, Mamdouh S Serag, Nesma R El-Qashlan, Gaber M Abogadallah
{"title":"Diurnal light fitness of the C3 and C4 species from the genus Atriplex under control and drought conditions.","authors":"Reham M Nada, Abdel Hamid A Khedr, Mamdouh S Serag, Nesma R El-Qashlan, Gaber M Abogadallah","doi":"10.1007/s11120-025-01154-5","DOIUrl":null,"url":null,"abstract":"<p><p>The literature showed contradictory results regarding the acclimation of C3 and C4 photosynthesis to low light intensities. Atriplex halimus, A. nummularia (C4, NAD-ME), A. portulacoides and A. prostrata (C3) were exposed to three natural light intensities: full light (FL), medium light (ML) and low light (LL) under control or drought condition. Under control condition, in A. halimus and A. nummularia, photosynthetic rate (A) was proportionally linked to stomatal conductance (g<sub>s</sub>). In A. halimus, A and gs peaked at 9:00 and 12:00 at FL only. However, A and gs peaked at 9:00 and 12:00 under FL and ML, respectively, in A. nummularia. The leakage of CO<sub>2</sub> could limit A in the C4 species under lower light intensities. A. halimus reduced g<sub>s</sub> and A (a typical NAD-ME strategy) to cope with lower light intensities. However, A. nummularia optimized leaf anatomical features and PEPC/ Rubisco ratio to reduce CO<sub>2</sub> leakage, leading to improved g<sub>s</sub>, A and biomass. In contrast, the increase in g<sub>s</sub> reflected no increase in A, which could be attributed to the negative effect of low light on the electron transport system in the C3 species. Under drought condition, the performance of the C3 and C4 species was better at ML and LL than that at FL because of enhanced g<sub>s</sub> and A. The present study concluded that the C4 species acclimated better to low light intensities than the C3 species. The acclimation of the C4 species was dependent on the species and the soil water content rather than the biochemical subtype.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 3","pages":"35"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthesis Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-025-01154-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The literature showed contradictory results regarding the acclimation of C3 and C4 photosynthesis to low light intensities. Atriplex halimus, A. nummularia (C4, NAD-ME), A. portulacoides and A. prostrata (C3) were exposed to three natural light intensities: full light (FL), medium light (ML) and low light (LL) under control or drought condition. Under control condition, in A. halimus and A. nummularia, photosynthetic rate (A) was proportionally linked to stomatal conductance (gs). In A. halimus, A and gs peaked at 9:00 and 12:00 at FL only. However, A and gs peaked at 9:00 and 12:00 under FL and ML, respectively, in A. nummularia. The leakage of CO2 could limit A in the C4 species under lower light intensities. A. halimus reduced gs and A (a typical NAD-ME strategy) to cope with lower light intensities. However, A. nummularia optimized leaf anatomical features and PEPC/ Rubisco ratio to reduce CO2 leakage, leading to improved gs, A and biomass. In contrast, the increase in gs reflected no increase in A, which could be attributed to the negative effect of low light on the electron transport system in the C3 species. Under drought condition, the performance of the C3 and C4 species was better at ML and LL than that at FL because of enhanced gs and A. The present study concluded that the C4 species acclimated better to low light intensities than the C3 species. The acclimation of the C4 species was dependent on the species and the soil water content rather than the biochemical subtype.
期刊介绍:
Photosynthesis Research is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis. It covers all aspects of photosynthesis research, including, but not limited to, light absorption and emission, excitation energy transfer, primary photochemistry, model systems, membrane components, protein complexes, electron transport, photophosphorylation, carbon assimilation, regulatory phenomena, molecular biology, environmental and ecological aspects, photorespiration, and bacterial and algal photosynthesis.