The multifunctional ascorbate peroxidase MoApx1 secreted by Magnaporthe oryzae mediates the suppression of rice immunity.

IF 10 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Cell Pub Date : 2025-06-11 DOI:10.1093/plcell/koaf146
Muxing Liu, Ziqian Guo, Jiexiong Hu, Yuke Chen, Fang Chen, Weizhong Chen, Wenya Wang, Boyang Ye, Zhixiang Yang, Gang Li, Xinyu Liu, Haifeng Zhang, Ping Wang, Zhengguang Zhang
{"title":"The multifunctional ascorbate peroxidase MoApx1 secreted by Magnaporthe oryzae mediates the suppression of rice immunity.","authors":"Muxing Liu, Ziqian Guo, Jiexiong Hu, Yuke Chen, Fang Chen, Weizhong Chen, Wenya Wang, Boyang Ye, Zhixiang Yang, Gang Li, Xinyu Liu, Haifeng Zhang, Ping Wang, Zhengguang Zhang","doi":"10.1093/plcell/koaf146","DOIUrl":null,"url":null,"abstract":"<p><p>Fungi secrete effector proteins, including extracellular redox enzymes, to inhibit host immunity. Redox enzymes have been hypothesized to inhibit host reactive oxygen species (ROS); however, how they suppress host immunity remains unknown. We characterized an extracellular ascorbate peroxidase (MoApx1) that is secreted into rice chloroplasts by the rice blast fungus Magnaporthe oryzae. MoApx1 displays multifunctional capabilities that significantly contribute to fungal virulence. Firstly, MoApx1 neutralizes host-derived H2O2 within the chloroplast through its peroxidase activity, thereby inhibiting chloroplast ROS (cROS)-mediated defense responses. Secondly, MoApx1 targets the photosystem I (PSI) subunit OsPsaD, disrupting photosynthetic electron transport to further suppress cROS production. Most importantly, MoApx1 has evolved a fungal-specific starch-binding domain that binds host starch, inhibiting its degradation and disrupting the energy supply required for host resistance. Our findings underscore the importance of a novel multifaceted strategy, potentially widely employed by other fungal pathogens, in suppressing host immunity during host-microbe interactions.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koaf146","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fungi secrete effector proteins, including extracellular redox enzymes, to inhibit host immunity. Redox enzymes have been hypothesized to inhibit host reactive oxygen species (ROS); however, how they suppress host immunity remains unknown. We characterized an extracellular ascorbate peroxidase (MoApx1) that is secreted into rice chloroplasts by the rice blast fungus Magnaporthe oryzae. MoApx1 displays multifunctional capabilities that significantly contribute to fungal virulence. Firstly, MoApx1 neutralizes host-derived H2O2 within the chloroplast through its peroxidase activity, thereby inhibiting chloroplast ROS (cROS)-mediated defense responses. Secondly, MoApx1 targets the photosystem I (PSI) subunit OsPsaD, disrupting photosynthetic electron transport to further suppress cROS production. Most importantly, MoApx1 has evolved a fungal-specific starch-binding domain that binds host starch, inhibiting its degradation and disrupting the energy supply required for host resistance. Our findings underscore the importance of a novel multifaceted strategy, potentially widely employed by other fungal pathogens, in suppressing host immunity during host-microbe interactions.

水稻Magnaporthe oryzae分泌的多功能抗坏血酸过氧化物酶MoApx1介导水稻免疫抑制。
真菌分泌包括细胞外氧化还原酶在内的效应蛋白来抑制宿主免疫。氧化还原酶被认为可以抑制宿主活性氧(ROS);然而,它们如何抑制宿主免疫仍然未知。我们鉴定了一种细胞外抗坏血酸过氧化物酶(MoApx1),它是由稻瘟病菌Magnaporthe oryzae分泌到水稻叶绿体中的。MoApx1显示出多种功能,对真菌毒力有重要影响。首先,MoApx1通过其过氧化物酶活性中和叶绿体内宿主来源的H2O2,从而抑制叶绿体ROS (cROS)介导的防御反应。其次,MoApx1靶向光系统I (PSI)亚基OsPsaD,破坏光合电子传递,进一步抑制cROS的产生。最重要的是,MoApx1进化出了一个真菌特异性的淀粉结合结构域,可以结合宿主淀粉,抑制其降解并破坏宿主抗性所需的能量供应。我们的发现强调了一种新的多方面策略的重要性,这种策略可能被其他真菌病原体广泛采用,在宿主-微生物相互作用期间抑制宿主免疫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信