Quinn T Easter, Zabdiel Alvarado-Martinez, Meik Kunz, Bruno F Matuck, Brittany T Rupp, Theresa Weaver, Zhi Ren, Aleksandra Tata, Juan Caballero-Perez, Nick Oscarson, Akira Hasuike, Ameer N Ghodke, Adam J Kimple, Purushothama R Tata, Scott H Randell, Hyun Koo, Kang I Ko, Kevin M Byrd
{"title":"Polybacterial intracellular macromolecules shape single-cell inflammatory profiles in upper airway epithelia.","authors":"Quinn T Easter, Zabdiel Alvarado-Martinez, Meik Kunz, Bruno F Matuck, Brittany T Rupp, Theresa Weaver, Zhi Ren, Aleksandra Tata, Juan Caballero-Perez, Nick Oscarson, Akira Hasuike, Ameer N Ghodke, Adam J Kimple, Purushothama R Tata, Scott H Randell, Hyun Koo, Kang I Ko, Kevin M Byrd","doi":"10.1038/s41522-025-00735-5","DOIUrl":null,"url":null,"abstract":"<p><p>Mucosal epithelial cells of the upper airways are continuously exposed to microbes throughout life. Specialized niches such as the anterior nares and the tooth are especially susceptible to dysbiosis and chronic inflammatory diseases. Here, we reanalyzed our v1-Human Periodontal Atlas, identifying polybacterial signatures (20% Gram-positive; 80% Gram-negative) and distinct responses of bacterial-associated epithelia. Fluorescence microscopy detected numerous persistent polybacterial intracellular macromolecules (PIMs) within human oral keratinocytes (HOKs), including bacterial rRNA, mRNA, and glycolipids. PIM levels directly correlated with enhanced receptor-ligand signaling in vivo. Inflammatory \"keratokines\" targeting immune cells were synergistically upregulated in lipopolysaccharide-challenged HOKs, while endogenous lipoteichoic acid (LTA) correlated with CXCL1/8 expression in vitro and in vivo. Application of Drug2Cell suggested altered drug efficacy predictions based on PIM detection-agnostic of disease state. CXCL1/8 expression again correlated with LTA in epithelial cells of the nasal cavity, oropharynx, and trachea. Thus, PIMs shape epithelial single-cell profiles across upper airway mucosae.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"100"},"PeriodicalIF":7.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12152179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00735-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mucosal epithelial cells of the upper airways are continuously exposed to microbes throughout life. Specialized niches such as the anterior nares and the tooth are especially susceptible to dysbiosis and chronic inflammatory diseases. Here, we reanalyzed our v1-Human Periodontal Atlas, identifying polybacterial signatures (20% Gram-positive; 80% Gram-negative) and distinct responses of bacterial-associated epithelia. Fluorescence microscopy detected numerous persistent polybacterial intracellular macromolecules (PIMs) within human oral keratinocytes (HOKs), including bacterial rRNA, mRNA, and glycolipids. PIM levels directly correlated with enhanced receptor-ligand signaling in vivo. Inflammatory "keratokines" targeting immune cells were synergistically upregulated in lipopolysaccharide-challenged HOKs, while endogenous lipoteichoic acid (LTA) correlated with CXCL1/8 expression in vitro and in vivo. Application of Drug2Cell suggested altered drug efficacy predictions based on PIM detection-agnostic of disease state. CXCL1/8 expression again correlated with LTA in epithelial cells of the nasal cavity, oropharynx, and trachea. Thus, PIMs shape epithelial single-cell profiles across upper airway mucosae.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.