{"title":"Nitrogen-Doped Biochar Aerogel as Efficient Peroxymonosulfate Activator for Organic Pollutant Removal.","authors":"Lingshuai Kong, Mingshuo Zhu, Jinhua Zhan","doi":"10.3390/nano15110865","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid industrialization has escalated environmental pollution caused by organic compounds, posing critical challenges for wastewater treatment. Advanced oxidation processes based on peroxymonosulfate (PMS) suffer from metal leaching and catalyst recycling challenges. To address these limitations, this study developed a nitrogen-doped biochar aerogel (NBA) derived from poplar wood powder as an eco-friendly and easily recoverable PMS activator. The NBA catalyst, optimized by tuning the calcination temperature to achieve a specific surface area of 297.5 m<sup>2</sup> g<sup>-1</sup>, achieved 97% bisphenol A (BPA) removal within 60 min with a catalyst dosage of 0.3 g/L and 1.0 mM PMS under mild conditions. The material exhibited broad pH adaptability (pH 3.5-9), recyclability (>94% efficiency after thermal treatment), and versatility in degrading seven pollutants (BPA, phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, rhodamine 6G, and levofloxacin) through synergistic radical (•OH, SO<sub>4</sub><sup>•-</sup>, O<sub>2</sub><sup>•-</sup>) and non-radical (<sup>1</sup>O<sub>2</sub>) pathways. X-ray photoelectron spectroscopy (XPS) analyses revealed that nitrogen doping enhanced PMS activation by optimizing electronic structures. This study highlights the potential of waste biomass-derived carbon aerogels as eco-friendly, efficient, and reusable catalysts for advanced oxidation processes in wastewater treatment.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15110865","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid industrialization has escalated environmental pollution caused by organic compounds, posing critical challenges for wastewater treatment. Advanced oxidation processes based on peroxymonosulfate (PMS) suffer from metal leaching and catalyst recycling challenges. To address these limitations, this study developed a nitrogen-doped biochar aerogel (NBA) derived from poplar wood powder as an eco-friendly and easily recoverable PMS activator. The NBA catalyst, optimized by tuning the calcination temperature to achieve a specific surface area of 297.5 m2 g-1, achieved 97% bisphenol A (BPA) removal within 60 min with a catalyst dosage of 0.3 g/L and 1.0 mM PMS under mild conditions. The material exhibited broad pH adaptability (pH 3.5-9), recyclability (>94% efficiency after thermal treatment), and versatility in degrading seven pollutants (BPA, phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, rhodamine 6G, and levofloxacin) through synergistic radical (•OH, SO4•-, O2•-) and non-radical (1O2) pathways. X-ray photoelectron spectroscopy (XPS) analyses revealed that nitrogen doping enhanced PMS activation by optimizing electronic structures. This study highlights the potential of waste biomass-derived carbon aerogels as eco-friendly, efficient, and reusable catalysts for advanced oxidation processes in wastewater treatment.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.