{"title":"Nanostructured Bubble Thin Films-From Simple Fabrication to Scalable Applications: A Review.","authors":"Naif Ahmed Alshehri","doi":"10.3390/nano15110868","DOIUrl":null,"url":null,"abstract":"<p><p>Several applications for nanotechnology necessitate the assembly of nanomaterials over large areas with precise orientation and density. Some techniques, such as Langmuir-Blodgett, contact printing, electric field directed assembly, and flow-assisted alignment, have been used to meet such a requirement. However, it remains uncertain whether these techniques can be used for scaling up nanomaterial thin films onto large solid and flexible substrates. Accordingly, this review paper addresses such an issue by reviewing two recent flexible and scalable methods: blown bubble films (BBFs) and the bubble deposition method (BDM). It specifically offers a comprehensive account of these two bubble thin film methods along with their recent applications. It also discusses how nanomaterial thin films are made to fabricate devices. It finally provides some recommendations for further research and applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158035/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15110868","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Several applications for nanotechnology necessitate the assembly of nanomaterials over large areas with precise orientation and density. Some techniques, such as Langmuir-Blodgett, contact printing, electric field directed assembly, and flow-assisted alignment, have been used to meet such a requirement. However, it remains uncertain whether these techniques can be used for scaling up nanomaterial thin films onto large solid and flexible substrates. Accordingly, this review paper addresses such an issue by reviewing two recent flexible and scalable methods: blown bubble films (BBFs) and the bubble deposition method (BDM). It specifically offers a comprehensive account of these two bubble thin film methods along with their recent applications. It also discusses how nanomaterial thin films are made to fabricate devices. It finally provides some recommendations for further research and applications.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.