{"title":"ATP stimulates appetite by enhancing the expression of hypothalamic orexigenic neuropeptides.","authors":"Nayoun Kim, Eun-Kyoung Kim","doi":"10.1186/s13041-025-01220-y","DOIUrl":null,"url":null,"abstract":"<p><p>Hypothalamic neuropeptides play a pivotal role in regulating appetite and energy homeostasis. Extracellular ATP, a key signaling molecule in the hypothalamus, is associated with neuronal activity and metabolic processes. However, its role in appetite control remains unclear. This study explored how sustained extracellular ATP regulates the expression of hypothalamic orexigenic neuropeptides Agrp and Npy. The administration of ATP alone reduced food intake, body weight, and orexigenic neuropeptide expression in mice. Conversely, inhibition of ATP conversion into AMP using the ectonucleoside triphosphate diphosphohydrolase inhibitor ARL67156 caused a transient increase in these parameters. Prolonged extracellular ATP was shown to upregulate Agrp and Npy expression via purinergic P2X4 receptor (P2X4R) activation in AGRP/NPY-expressing cells. Activation of P2X4R induced CaMKII phosphorylation, which subsequently led to CREB phosphorylation and upregulation of orexigenic neuropeptides. Our findings reveal a mechanism whereby extracellular ATP accumulation promotes appetite through P2X4R-CaMKII-CREB signaling, shedding light on how extracellular ATP impacts hypothalamic appetite control.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"49"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150506/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01220-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hypothalamic neuropeptides play a pivotal role in regulating appetite and energy homeostasis. Extracellular ATP, a key signaling molecule in the hypothalamus, is associated with neuronal activity and metabolic processes. However, its role in appetite control remains unclear. This study explored how sustained extracellular ATP regulates the expression of hypothalamic orexigenic neuropeptides Agrp and Npy. The administration of ATP alone reduced food intake, body weight, and orexigenic neuropeptide expression in mice. Conversely, inhibition of ATP conversion into AMP using the ectonucleoside triphosphate diphosphohydrolase inhibitor ARL67156 caused a transient increase in these parameters. Prolonged extracellular ATP was shown to upregulate Agrp and Npy expression via purinergic P2X4 receptor (P2X4R) activation in AGRP/NPY-expressing cells. Activation of P2X4R induced CaMKII phosphorylation, which subsequently led to CREB phosphorylation and upregulation of orexigenic neuropeptides. Our findings reveal a mechanism whereby extracellular ATP accumulation promotes appetite through P2X4R-CaMKII-CREB signaling, shedding light on how extracellular ATP impacts hypothalamic appetite control.
期刊介绍:
Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings.
Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.