MACS and acellular autologous non-ovarian tissue scaffolds: a promising strategy for safe and efficient follicle transplantation in hematologic cancer.
{"title":"MACS and acellular autologous non-ovarian tissue scaffolds: a promising strategy for safe and efficient follicle transplantation in hematologic cancer.","authors":"Lijun Yin, Yating Zhao, Peiwen Zhang, Tongyun Qi, Peilin Han, Luya Cai, Jun Pan, Yongyi Yang, Jie Shi, Shi Feng, Yinying Zou, Kangxin He, Guoliang Xie, Weihua He, Xinhui Zhou, Jianhua Qian","doi":"10.1186/s13048-025-01687-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Advances in ovarian tissue cryopreservation offer new hope for young hematologic cancer patients. However, the risk of cancer cell reintroduction during transplantation remains a major concern, necessitating both effective tumor cell removal strategies and biocompatible scaffold development.</p><p><strong>Methods: </strong>We characterized decellularized adipose, peritoneal, and ovarian tissue scaffolds through H&E staining, immunofluorescence, SEM, and proliferation assays. Magnetic-activated cell sorting (MACS) efficiency was evaluated for reducing hematologic malignancy contamination. Follicle function was assessed via immunofluorescence and ELISA, while RNA-seq and qPCR compared gene expression across scaffolds.</p><p><strong>Results: </strong>Sodium dodecyl sulfate (SDS) decellularization effectively preserved extracellular matrix architecture across all tissues. In lipopolysaccharide (LPS)-induced leukocytosis models, MACS significantly reduced leukocyte contamination (p < 0.0001). Comparable follicle growth and hormone production (estrogen/progesterone/inhibin) were observed across scaffolds. RNA-seq analysis identified subtle differential expression in a small subset of follicle function-related genes, while the majority of genes exhibited conserved expression patterns across scaffolds.</p><p><strong>Conclusion: </strong>The results demonstrate that MACS effectively prevents tumor cell transmission during follicle transplantation. All decellularized scaffolds exhibited high follicular biocompatibility in this animal model, with non-ovarian scaffolds emerging as promising autologous alternatives for artificial ovary engineering.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":"18 1","pages":"126"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150555/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-025-01687-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Advances in ovarian tissue cryopreservation offer new hope for young hematologic cancer patients. However, the risk of cancer cell reintroduction during transplantation remains a major concern, necessitating both effective tumor cell removal strategies and biocompatible scaffold development.
Methods: We characterized decellularized adipose, peritoneal, and ovarian tissue scaffolds through H&E staining, immunofluorescence, SEM, and proliferation assays. Magnetic-activated cell sorting (MACS) efficiency was evaluated for reducing hematologic malignancy contamination. Follicle function was assessed via immunofluorescence and ELISA, while RNA-seq and qPCR compared gene expression across scaffolds.
Results: Sodium dodecyl sulfate (SDS) decellularization effectively preserved extracellular matrix architecture across all tissues. In lipopolysaccharide (LPS)-induced leukocytosis models, MACS significantly reduced leukocyte contamination (p < 0.0001). Comparable follicle growth and hormone production (estrogen/progesterone/inhibin) were observed across scaffolds. RNA-seq analysis identified subtle differential expression in a small subset of follicle function-related genes, while the majority of genes exhibited conserved expression patterns across scaffolds.
Conclusion: The results demonstrate that MACS effectively prevents tumor cell transmission during follicle transplantation. All decellularized scaffolds exhibited high follicular biocompatibility in this animal model, with non-ovarian scaffolds emerging as promising autologous alternatives for artificial ovary engineering.
期刊介绍:
Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ.
Topical areas include, but are not restricted to:
Ovary development, hormone secretion and regulation
Follicle growth and ovulation
Infertility and Polycystic ovarian syndrome
Regulation of pituitary and other biological functions by ovarian hormones
Ovarian cancer, its prevention, diagnosis and treatment
Drug development and screening
Role of stem cells in ovary development and function.