Robyn A Grant, Charlotte Brassey, Victor G Goss, Eugene L Starostin, Tom Allen
{"title":"Determining modulus of elasticity using finite element analysis and non-destructive testing: Are aquatic animal whiskers stiffer?","authors":"Robyn A Grant, Charlotte Brassey, Victor G Goss, Eugene L Starostin, Tom Allen","doi":"10.1111/joa.14289","DOIUrl":null,"url":null,"abstract":"<p><p>Approximating the stiffness of biological materials can give important insights into how structures deform and when they may fail. Some samples may be too precious to test to destruction, or too fine to position accurately for conventional material testing, which makes it challenging to obtain approximations of material stiffness. Using two-dimensional scans, non-destructive bending tests, and finite element (FE) modeling, we show that we can approximate the modulus of elasticity of samples by fitting FE model data to that of experimental bend tests. We demonstrate our protocol on representative whiskers from three species of Carnivorans, including a terrestrial red fox, semi-aquatic Eurasian otter, and aquatic phocid grey seal. Grey seal whiskers had the highest approximated modulus of elasticity (0.5-19 GPa), followed by Eurasian otter (0.5-13 GPa) and red fox (0.1-1.5 GPa). We suggest that, as in many other biological structures, adaptations in both the shape and material stiffness of the whisker contribute to how it bends when loaded. Specifically, a larger base radius and higher material stiffness both act to increase whisker flexural rigidity in the aquatic grey seal. This protocol has broad applications in comparative biology and provides a way to determine shape and material stiffness information for various flexible specimen types.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14289","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Approximating the stiffness of biological materials can give important insights into how structures deform and when they may fail. Some samples may be too precious to test to destruction, or too fine to position accurately for conventional material testing, which makes it challenging to obtain approximations of material stiffness. Using two-dimensional scans, non-destructive bending tests, and finite element (FE) modeling, we show that we can approximate the modulus of elasticity of samples by fitting FE model data to that of experimental bend tests. We demonstrate our protocol on representative whiskers from three species of Carnivorans, including a terrestrial red fox, semi-aquatic Eurasian otter, and aquatic phocid grey seal. Grey seal whiskers had the highest approximated modulus of elasticity (0.5-19 GPa), followed by Eurasian otter (0.5-13 GPa) and red fox (0.1-1.5 GPa). We suggest that, as in many other biological structures, adaptations in both the shape and material stiffness of the whisker contribute to how it bends when loaded. Specifically, a larger base radius and higher material stiffness both act to increase whisker flexural rigidity in the aquatic grey seal. This protocol has broad applications in comparative biology and provides a way to determine shape and material stiffness information for various flexible specimen types.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.