{"title":"Involvement of nucleic acid-sensing toll-like receptors in human diseases and their controlling mechanisms.","authors":"You-Sheng Lin, Yung-Chi Chang, Tzu-Yu Pu, Tsung-Hsien Chuang, Li-Chung Hsu","doi":"10.1186/s12929-025-01151-9","DOIUrl":null,"url":null,"abstract":"<p><p>The innate immune system is the host's initial response to eliminate pathogens and repair tissue damage. Innate immune cells, such as macrophages and dendritic cells, use pattern recognition receptors (PRRs) to recognize microbial structures and stress-induced molecules released from dead or damaged cells, thereby initiating immune responses. Among PRRs, Toll-like receptors (TLRs) are well-studied and are located either on the cell surface or in endosomal compartments. Most endosomal TLRs specifically recognize nucleic acids and are thus referred to as nucleic acid (NA)-sensing TLRs. Upon activation, these receptors induce the production of inflammatory cytokines and type I interferons and initiate subsequent adaptive immunity. These immune responses work to suppress pathogens and inhibit tumor growth. However, excessive cytokine and interferon production can lead to various inflammatory diseases. This review focuses on mammalian nucleic acid-sensing TLRs, summarizing the molecular regulation of their activations, the impact of their dysregulation on human diseases, and therapeutic strategies that target these TLRs.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"56"},"PeriodicalIF":9.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150566/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-025-01151-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The innate immune system is the host's initial response to eliminate pathogens and repair tissue damage. Innate immune cells, such as macrophages and dendritic cells, use pattern recognition receptors (PRRs) to recognize microbial structures and stress-induced molecules released from dead or damaged cells, thereby initiating immune responses. Among PRRs, Toll-like receptors (TLRs) are well-studied and are located either on the cell surface or in endosomal compartments. Most endosomal TLRs specifically recognize nucleic acids and are thus referred to as nucleic acid (NA)-sensing TLRs. Upon activation, these receptors induce the production of inflammatory cytokines and type I interferons and initiate subsequent adaptive immunity. These immune responses work to suppress pathogens and inhibit tumor growth. However, excessive cytokine and interferon production can lead to various inflammatory diseases. This review focuses on mammalian nucleic acid-sensing TLRs, summarizing the molecular regulation of their activations, the impact of their dysregulation on human diseases, and therapeutic strategies that target these TLRs.
期刊介绍:
The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.