Mesenchymal stem cell-derived exosome subpopulations remained consistent for 28 culture days, displaying therapeutic effects in a silicosis mouse model.
{"title":"Mesenchymal stem cell-derived exosome subpopulations remained consistent for 28 culture days, displaying therapeutic effects in a silicosis mouse model.","authors":"Lina Zhang, Jing Jin, Liguang Sun, Gang Hou, Mingming Deng, Yiding Bian, Jianming Liu, Wei Cheng, Shaoliang Xing, Wenjia Wang, Xin Dong, Qingjie Fan, Lei Gao, Xinhua Lei, Yongli Bao, Yongguang Yang","doi":"10.3389/fcell.2025.1550447","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The clinical translation of mesenchymal stem cell-derived exosome faces critical challenges in scalable production, subpopulation stability, and therapeutic route optimization. This study systematically addresses these barriers to advance exosome-based therapies.</p><p><strong>Methods: </strong>We established a 28-day biomanufacturing workflow using a Hollow Fiber 3D bioreactor integrated with the RoosterBio exosome-harvesting system. Exosomes were subsequently purified and rigorously characterized at multiple production stages, followed by isotopically labeled with <sup>89</sup>Zr for biodistribution studies. Therapeutic efficacy was evaluated in a silica-induced mouse silicosis model comparing intravenous and respiratory administration routes.</p><p><strong>Results: </strong>Our findings indicate that (1) the RoosterBio exosome harvesting system in the Hollow Fiber 3D bioreactor enables 28 days production of exosomes, with stable harvesting of the main subpopulations over a certain period; (2) systemic administration via intravenous injection in rats reveals distinct tissue tropism, with isotope-labeled exosomes exhibiting predominant hepatic accumulation; and (3) in the silica-induced mouse silicosis model, respiratory delivery of exosomes significantly improves disease progression, whereas intravenous infusion of exosomes does not yield notable therapeutic effects.</p><p><strong>Discussion: </strong>This study proposes a holistic workflow for early-stage development of natural exosomes as therapeutics, offering guidance on industrial-scale production, purification, and characterization of exosomes with stable subpopulation distribution and functional consistency. It further addresses administration route selection in pulmonary disease animal models and heterogeneity assessment of natural exosomes. These advancements facilitate clinical translation of exosome-based therapies.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1550447"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1550447","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The clinical translation of mesenchymal stem cell-derived exosome faces critical challenges in scalable production, subpopulation stability, and therapeutic route optimization. This study systematically addresses these barriers to advance exosome-based therapies.
Methods: We established a 28-day biomanufacturing workflow using a Hollow Fiber 3D bioreactor integrated with the RoosterBio exosome-harvesting system. Exosomes were subsequently purified and rigorously characterized at multiple production stages, followed by isotopically labeled with 89Zr for biodistribution studies. Therapeutic efficacy was evaluated in a silica-induced mouse silicosis model comparing intravenous and respiratory administration routes.
Results: Our findings indicate that (1) the RoosterBio exosome harvesting system in the Hollow Fiber 3D bioreactor enables 28 days production of exosomes, with stable harvesting of the main subpopulations over a certain period; (2) systemic administration via intravenous injection in rats reveals distinct tissue tropism, with isotope-labeled exosomes exhibiting predominant hepatic accumulation; and (3) in the silica-induced mouse silicosis model, respiratory delivery of exosomes significantly improves disease progression, whereas intravenous infusion of exosomes does not yield notable therapeutic effects.
Discussion: This study proposes a holistic workflow for early-stage development of natural exosomes as therapeutics, offering guidance on industrial-scale production, purification, and characterization of exosomes with stable subpopulation distribution and functional consistency. It further addresses administration route selection in pulmonary disease animal models and heterogeneity assessment of natural exosomes. These advancements facilitate clinical translation of exosome-based therapies.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.