{"title":"iSeizdiag: toward the framework development of epileptic seizure detection for healthcare.","authors":"Ashish Sharma, Akshat Saxena, Mradul Agrawal, Kunal Kishor, Deepti Kaushik, Prateek Jain, Arvind R Yadav, Manob Jyoti Saikia","doi":"10.3389/fncom.2025.1545425","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The seizure episodes result from abnormal and excessive electrical discharges by a group of brain cells. EEG framework-based signal acquisition is the real-time module that records the electrical discharges produced by the brain cells. The electrical discharges are amplified and appear as a graph on electroencephalogram systems. Different neurological disorders are represented as different waves on EEG records.</p><p><strong>Method: </strong>This paper involves the detection of Epilepsy which appears as rapid spiking on electroencephalogram signals, using feature extraction and machine learning techniques. Various models, such as the Support Vector Machine, K Nearest Neighbor, and random forest, have been trained, and accuracy has been analyzed to predict the seizure.</p><p><strong>Result: </strong>An average accuracy of 95% has been claimed using the optimized model for epileptic seizure detection during training and validation. During the analysis of multiple models, the 97% accuracy is claimed after testing. Some statistical parameters are calculated to justify the optimized framework.</p><p><strong>Discussion: </strong>The proposed approach represents a satisfactory contribution in precise detection for smart healthcare.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1545425"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149152/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1545425","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The seizure episodes result from abnormal and excessive electrical discharges by a group of brain cells. EEG framework-based signal acquisition is the real-time module that records the electrical discharges produced by the brain cells. The electrical discharges are amplified and appear as a graph on electroencephalogram systems. Different neurological disorders are represented as different waves on EEG records.
Method: This paper involves the detection of Epilepsy which appears as rapid spiking on electroencephalogram signals, using feature extraction and machine learning techniques. Various models, such as the Support Vector Machine, K Nearest Neighbor, and random forest, have been trained, and accuracy has been analyzed to predict the seizure.
Result: An average accuracy of 95% has been claimed using the optimized model for epileptic seizure detection during training and validation. During the analysis of multiple models, the 97% accuracy is claimed after testing. Some statistical parameters are calculated to justify the optimized framework.
Discussion: The proposed approach represents a satisfactory contribution in precise detection for smart healthcare.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro