{"title":"Psychedelic fungi.","authors":"Jason Slot, Dirk Hoffmeister","doi":"10.1016/j.cub.2025.02.026","DOIUrl":null,"url":null,"abstract":"<p><p>Several species of fungi, collectively known as 'psychedelic fungi', produce a range of psychoactive substances, such as psilocybin, ibotenic acid, muscimol and lysergic acid amides. These substances interact with neurotransmitter receptors in the human brain to induce profound psychological effects. These substances are found across multiple fungal phyla, in the mushroom-forming genera Psilocybe, Amanita, and others, and also the ergot-producing Claviceps and insect-pathogenic Massospora. The ecological roles of these psychedelics may include deterring predators or facilitating spore dispersal. Enzymes for psychedelic compound biosynthesis are encoded in metabolic gene clusters that are sometimes dispersed by horizontal gene transfer, resulting in a patchy distribution of psychedelics among species. The (re-)emerging science of these strange substances creates new opportunities and challenges for science and humanity at large.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":"35 11","pages":"R513-R518"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.02.026","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Several species of fungi, collectively known as 'psychedelic fungi', produce a range of psychoactive substances, such as psilocybin, ibotenic acid, muscimol and lysergic acid amides. These substances interact with neurotransmitter receptors in the human brain to induce profound psychological effects. These substances are found across multiple fungal phyla, in the mushroom-forming genera Psilocybe, Amanita, and others, and also the ergot-producing Claviceps and insect-pathogenic Massospora. The ecological roles of these psychedelics may include deterring predators or facilitating spore dispersal. Enzymes for psychedelic compound biosynthesis are encoded in metabolic gene clusters that are sometimes dispersed by horizontal gene transfer, resulting in a patchy distribution of psychedelics among species. The (re-)emerging science of these strange substances creates new opportunities and challenges for science and humanity at large.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.