Giovanni Consoli, Ho Fong Leong, Geoffry A Davis, Tom Richardson, Aiysha McInnes, James W Murray, Andrea Fantuzzi, A William Rutherford
{"title":"Structure of a stripped-down and tuned-up far-red phycobilisome.","authors":"Giovanni Consoli, Ho Fong Leong, Geoffry A Davis, Tom Richardson, Aiysha McInnes, James W Murray, Andrea Fantuzzi, A William Rutherford","doi":"10.1038/s42003-025-08326-y","DOIUrl":null,"url":null,"abstract":"<p><p>A diverse subset of cyanobacteria can transiently modify their photosynthetic machinery during far-red light photoacclimation to drive photosynthesis with less energetic photons (700 nm-800 nm). To achieve this, all the main light-driven components of the photosynthetic apparatus, including their allophycocyanin antenna, are replaced with red-shifted paralogues. Recent studies based on the structure of an incomplete complex provided some insights into the tuning of the far-red phycobiliproteins. Here, we solved the structure of the intact bicylindrical allophycocyanin complex from the cyanobacterium Chroococcidiopsis thermalis PCC 7203 at a resolution of 2.51 Å determined by Cryo-electron microscopy single particle analysis. A comparison between conserved structural features in far-red and white light allophycocyanin cores provides insight on the evolutionary adaptations needed to optimize excitation energy transfer in the far-red light adapted photosynthetic apparatus. The reduction in antenna size in far-red photosynthesis suggests a need to optimize membrane packing to increase the number of photosystems and tune the ratio between chlorophyll f molecules and bilin pigments, while the wider spread in the absorption range of the bilins suggests faster and more efficient excitation energy transfer to far-red Photosystem II by limiting backflow of excitation from the reaction centres to the far-red bilin pigments.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"907"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12152189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08326-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A diverse subset of cyanobacteria can transiently modify their photosynthetic machinery during far-red light photoacclimation to drive photosynthesis with less energetic photons (700 nm-800 nm). To achieve this, all the main light-driven components of the photosynthetic apparatus, including their allophycocyanin antenna, are replaced with red-shifted paralogues. Recent studies based on the structure of an incomplete complex provided some insights into the tuning of the far-red phycobiliproteins. Here, we solved the structure of the intact bicylindrical allophycocyanin complex from the cyanobacterium Chroococcidiopsis thermalis PCC 7203 at a resolution of 2.51 Å determined by Cryo-electron microscopy single particle analysis. A comparison between conserved structural features in far-red and white light allophycocyanin cores provides insight on the evolutionary adaptations needed to optimize excitation energy transfer in the far-red light adapted photosynthetic apparatus. The reduction in antenna size in far-red photosynthesis suggests a need to optimize membrane packing to increase the number of photosystems and tune the ratio between chlorophyll f molecules and bilin pigments, while the wider spread in the absorption range of the bilins suggests faster and more efficient excitation energy transfer to far-red Photosystem II by limiting backflow of excitation from the reaction centres to the far-red bilin pigments.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.