Structure of a stripped-down and tuned-up far-red phycobilisome.

IF 5.2 1区 生物学 Q1 BIOLOGY
Giovanni Consoli, Ho Fong Leong, Geoffry A Davis, Tom Richardson, Aiysha McInnes, James W Murray, Andrea Fantuzzi, A William Rutherford
{"title":"Structure of a stripped-down and tuned-up far-red phycobilisome.","authors":"Giovanni Consoli, Ho Fong Leong, Geoffry A Davis, Tom Richardson, Aiysha McInnes, James W Murray, Andrea Fantuzzi, A William Rutherford","doi":"10.1038/s42003-025-08326-y","DOIUrl":null,"url":null,"abstract":"<p><p>A diverse subset of cyanobacteria can transiently modify their photosynthetic machinery during far-red light photoacclimation to drive photosynthesis with less energetic photons (700 nm-800 nm). To achieve this, all the main light-driven components of the photosynthetic apparatus, including their allophycocyanin antenna, are replaced with red-shifted paralogues. Recent studies based on the structure of an incomplete complex provided some insights into the tuning of the far-red phycobiliproteins. Here, we solved the structure of the intact bicylindrical allophycocyanin complex from the cyanobacterium Chroococcidiopsis thermalis PCC 7203 at a resolution of 2.51 Å determined by Cryo-electron microscopy single particle analysis. A comparison between conserved structural features in far-red and white light allophycocyanin cores provides insight on the evolutionary adaptations needed to optimize excitation energy transfer in the far-red light adapted photosynthetic apparatus. The reduction in antenna size in far-red photosynthesis suggests a need to optimize membrane packing to increase the number of photosystems and tune the ratio between chlorophyll f molecules and bilin pigments, while the wider spread in the absorption range of the bilins suggests faster and more efficient excitation energy transfer to far-red Photosystem II by limiting backflow of excitation from the reaction centres to the far-red bilin pigments.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"907"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12152189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08326-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A diverse subset of cyanobacteria can transiently modify their photosynthetic machinery during far-red light photoacclimation to drive photosynthesis with less energetic photons (700 nm-800 nm). To achieve this, all the main light-driven components of the photosynthetic apparatus, including their allophycocyanin antenna, are replaced with red-shifted paralogues. Recent studies based on the structure of an incomplete complex provided some insights into the tuning of the far-red phycobiliproteins. Here, we solved the structure of the intact bicylindrical allophycocyanin complex from the cyanobacterium Chroococcidiopsis thermalis PCC 7203 at a resolution of 2.51 Å determined by Cryo-electron microscopy single particle analysis. A comparison between conserved structural features in far-red and white light allophycocyanin cores provides insight on the evolutionary adaptations needed to optimize excitation energy transfer in the far-red light adapted photosynthetic apparatus. The reduction in antenna size in far-red photosynthesis suggests a need to optimize membrane packing to increase the number of photosystems and tune the ratio between chlorophyll f molecules and bilin pigments, while the wider spread in the absorption range of the bilins suggests faster and more efficient excitation energy transfer to far-red Photosystem II by limiting backflow of excitation from the reaction centres to the far-red bilin pigments.

一个精简和调整的远红色藻胆体的结构。
蓝藻的一个不同子集可以在远红光光驯化过程中短暂地改变其光合机制,以较少的能量光子(700 nm-800 nm)驱动光合作用。为了实现这一目标,光合作用装置的所有主要的光驱动部件,包括它们的异藻蓝蛋白天线,都被红移平行体取代。最近基于不完全复合体结构的研究为远红色藻胆蛋白的调节提供了一些见解。在这里,我们通过低温电子显微镜单粒子分析,以2.51 Å的分辨率解析了来自蓝细菌Chroococcidiopsis thermalis PCC 7203完整的双柱状异藻蓝蛋白复合物的结构。远红光和白光异藻蓝蛋白核心的保守结构特征的比较,为优化远红光适应光合装置中激发能转移所需的进化适应提供了见解。远红色光合作用中天线尺寸的减小表明需要优化膜包装以增加光系统的数量,并调整叶绿素f分子与十亿素色素之间的比例,而在十亿素吸收范围内更广泛的分布表明,通过限制从反应中心向远红色十亿素色素的回流,激发能更快更有效地转移到远红色光系统II。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信