{"title":"HSP110 Regulates the Assembly of the SWI/SNF Complex.","authors":"Océane Pointeau, Manon Paccagnini, Natalia Borges-Bonan, Léo Biziorek, Sébastien Causse, Carmen Garrido, Laurence Dubrez","doi":"10.3390/cells14110849","DOIUrl":null,"url":null,"abstract":"<p><p>HSP110 is a ubiquitous chaperone contributing to proteostasis. It has a disaggregation activity and can refold denatured proteins. It can regulate fundamental signaling pathways involved in oncogenesis, such as Wnt/β-catenin, NF-κB and STAT3 signaling pathways. In gastric and colorectal cancer, HSP110 has been detected in the nucleus, and nuclear expression has been associated with the resistance of cells to 5-FU chemotherapy. Nuclear translocation of HSP110 is promoted by the exposure of cells to DNA-damaging agents. In a previous work, we demonstrated that nuclear HSP110 participates in the NHEJ DNA repair pathway by facilitating the recruitment of DNA-PKcs to Ku70/80 heterodimers at the site of DNA double-strand breaks. In the present work, analysis of HSP110s' nuclear interactome revealed an enrichment of components from SWI/SNF chromatin remodeling complexes. We demonstrate that HSP110 is strongly associated with chromatin in temozolomide- and oxaliplatin-treated cells and directly interacts with the core subunit SMARCC2, thereby facilitating the assembly of SWI/SNF complexes. This work expands upon the role of HSP110, which regulates not only proteostasis but also the assembly of critical nuclear macromolecular complexes involved in the adaptive stress response.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 11","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14110849","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
HSP110 is a ubiquitous chaperone contributing to proteostasis. It has a disaggregation activity and can refold denatured proteins. It can regulate fundamental signaling pathways involved in oncogenesis, such as Wnt/β-catenin, NF-κB and STAT3 signaling pathways. In gastric and colorectal cancer, HSP110 has been detected in the nucleus, and nuclear expression has been associated with the resistance of cells to 5-FU chemotherapy. Nuclear translocation of HSP110 is promoted by the exposure of cells to DNA-damaging agents. In a previous work, we demonstrated that nuclear HSP110 participates in the NHEJ DNA repair pathway by facilitating the recruitment of DNA-PKcs to Ku70/80 heterodimers at the site of DNA double-strand breaks. In the present work, analysis of HSP110s' nuclear interactome revealed an enrichment of components from SWI/SNF chromatin remodeling complexes. We demonstrate that HSP110 is strongly associated with chromatin in temozolomide- and oxaliplatin-treated cells and directly interacts with the core subunit SMARCC2, thereby facilitating the assembly of SWI/SNF complexes. This work expands upon the role of HSP110, which regulates not only proteostasis but also the assembly of critical nuclear macromolecular complexes involved in the adaptive stress response.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.