{"title":"Motility in Filamentous Cyanobacteria.","authors":"Douglas D Risser","doi":"10.1146/annurev-micro-051024-033328","DOIUrl":null,"url":null,"abstract":"<p><p>Filamentous cyanobacteria are multicellular organisms that perform oxygenic photosynthesis and frequently exhibit surface motility. This review discusses the underlying mechanism facilitating motility in these organisms, with a focus on recent molecular and genetic studies. While previous explanations for this motility have proposed exotic mechanisms, the current data indicate that all filamentous cyanobacteria produce a similar motility-associated extracellular polysaccharide (EPS) or slime essential for movement and employ a type IV pilus (T4P) motor to power motility. The (<i>a</i>) regulation of the motor to facilitate coordinated polarity and phototaxis and (<i>b</i>) possible bidirectional feedback between the T4P and motility-associated polysaccharide are discussed as well. Finally, the role of motility in promoting diverse biological phenomena, including dispersal, phototaxis, biofilm formation, granulation, and symbiosis, is explored.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-micro-051024-033328","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Filamentous cyanobacteria are multicellular organisms that perform oxygenic photosynthesis and frequently exhibit surface motility. This review discusses the underlying mechanism facilitating motility in these organisms, with a focus on recent molecular and genetic studies. While previous explanations for this motility have proposed exotic mechanisms, the current data indicate that all filamentous cyanobacteria produce a similar motility-associated extracellular polysaccharide (EPS) or slime essential for movement and employ a type IV pilus (T4P) motor to power motility. The (a) regulation of the motor to facilitate coordinated polarity and phototaxis and (b) possible bidirectional feedback between the T4P and motility-associated polysaccharide are discussed as well. Finally, the role of motility in promoting diverse biological phenomena, including dispersal, phototaxis, biofilm formation, granulation, and symbiosis, is explored.
期刊介绍:
Annual Review of Microbiology is a Medical and Microbiology Journal and published by Annual Reviews Inc. The Annual Review of Microbiology, in publication since 1947, covers significant developments in the field of microbiology, encompassing bacteria, archaea, viruses, and unicellular eukaryotes. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The Impact Factor of Annual Review of Microbiology is 10.242 (2024) Impact factor. The Annual Review of Microbiology Journal is Indexed with Pubmed, Scopus, UGC (University Grants Commission).