{"title":"Engineering CRISPR System-Based Bacterial Outer Membrane Vesicle Potentiates T Cell Immunity for Enhanced Cancer Immunotherapy.","authors":"Hongjin Wang, Hengji Zhan, Bolin Pan, Leli Zeng, Zehua Chen, Sen Liu, Qiang Zhang, Xuwei Hong, Junlin Lu, Xinrou Lin, Xiao Zhao, Jiajian Lai, Kaiwen Jie, Ye Li, Jianmei Zhong, Shengmeng Peng, Siting Chen, Changhao Chen, Wenlong Zhong, Shaoxu Wu, Yihang Pan, Tianxin Lin, Xu Chen","doi":"10.1002/adma.202501565","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment but only benefits a subset of patients because of insufficient infiltration and inactivation of effector T cells. Bacterial outer membrane vesicles (OMVs) can activate immunity and deliver therapeutic agents for immunotherapy. However, efficiently targeting and packaging therapeutic molecules into OMVs remains challenging. Here, the engineered E. coli BL21-derived OMVs enable the packaging of multiple genes, resulting in a 7-fold increase in DNA enrichment efficiency and gene silencing in vitro. Moreover, the engineered OMVs carrying genes encoding CXCL9 and IL12 (OMV-C9I12) reprogram tumor cells to secrete these factors, significantly enhancing T-cell chemotaxis and activation. More importantly, this system markedly inhibits tumors, extends survival, and synergizes with anti-PD-1/PD-L1 therapy in murine MB49 and B16F10 tumor models. Single-cell RNA sequencing (scRNA-seq) further reveals significant upregulation of T-cell chemotaxis and activation-related pathways following OMV-C9I12 treatment. Finally, OMV-C9I12 potentiates T cell-mediated immunotherapy and suppresses the growth of bladder and breast cancer tumors in humanized mouse models. These findings highlight the potential of this engineered OMV platform for cancer gene therapy and provide novel strategies to overcome resistance to immunotherapy.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2501565"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202501565","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment but only benefits a subset of patients because of insufficient infiltration and inactivation of effector T cells. Bacterial outer membrane vesicles (OMVs) can activate immunity and deliver therapeutic agents for immunotherapy. However, efficiently targeting and packaging therapeutic molecules into OMVs remains challenging. Here, the engineered E. coli BL21-derived OMVs enable the packaging of multiple genes, resulting in a 7-fold increase in DNA enrichment efficiency and gene silencing in vitro. Moreover, the engineered OMVs carrying genes encoding CXCL9 and IL12 (OMV-C9I12) reprogram tumor cells to secrete these factors, significantly enhancing T-cell chemotaxis and activation. More importantly, this system markedly inhibits tumors, extends survival, and synergizes with anti-PD-1/PD-L1 therapy in murine MB49 and B16F10 tumor models. Single-cell RNA sequencing (scRNA-seq) further reveals significant upregulation of T-cell chemotaxis and activation-related pathways following OMV-C9I12 treatment. Finally, OMV-C9I12 potentiates T cell-mediated immunotherapy and suppresses the growth of bladder and breast cancer tumors in humanized mouse models. These findings highlight the potential of this engineered OMV platform for cancer gene therapy and provide novel strategies to overcome resistance to immunotherapy.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.