Maximal Entropy Formalism and the Restricted Boltzmann Machine.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-06-19 Epub Date: 2025-06-10 DOI:10.1021/acs.jpca.5c02349
Vinit Singh, Rishabh Gupta, Manas Sajjan, Francoise Remacle, Raphael D Levine, Sabre Kais
{"title":"Maximal Entropy Formalism and the Restricted Boltzmann Machine.","authors":"Vinit Singh, Rishabh Gupta, Manas Sajjan, Francoise Remacle, Raphael D Levine, Sabre Kais","doi":"10.1021/acs.jpca.5c02349","DOIUrl":null,"url":null,"abstract":"<p><p>The connection between the maximum entropy (MaxEnt) formalism and restricted Boltzmann machines (RBMs) is natural as both give rise to a Boltzmann-like distribution with constraints enforced by Lagrange multipliers, which correspond to RBM parameters. We integrate RBMs into quantum state tomography by using them as probabilistic models to approximate quantum states while satisfying MaxEnt constraints. Additionally, we employ polynomially efficient quantum sampling techniques to enhance RBM training, enabling scalable and high-fidelity quantum state reconstruction. This approach provides a computationally efficient framework for applying RBMs to MaxEnt-based quantum tomography. Furthermore, our method applies to the general and previously unaddressed case of reconstructing arbitrary mixed quantum states from incomplete and potentially noncommuting sets of expectations of observables while still ensuring maximal entropy.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"5405-5414"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c02349","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The connection between the maximum entropy (MaxEnt) formalism and restricted Boltzmann machines (RBMs) is natural as both give rise to a Boltzmann-like distribution with constraints enforced by Lagrange multipliers, which correspond to RBM parameters. We integrate RBMs into quantum state tomography by using them as probabilistic models to approximate quantum states while satisfying MaxEnt constraints. Additionally, we employ polynomially efficient quantum sampling techniques to enhance RBM training, enabling scalable and high-fidelity quantum state reconstruction. This approach provides a computationally efficient framework for applying RBMs to MaxEnt-based quantum tomography. Furthermore, our method applies to the general and previously unaddressed case of reconstructing arbitrary mixed quantum states from incomplete and potentially noncommuting sets of expectations of observables while still ensuring maximal entropy.

最大熵形式与受限玻尔兹曼机。
最大熵(MaxEnt)形式主义和受限玻尔兹曼机(RBM)之间的联系是很自然的,因为它们都产生了由拉格朗日乘子强制约束的类玻尔兹曼分布,这些约束对应于RBM参数。我们将rbm集成到量子态层析中,使用它们作为概率模型来近似量子态,同时满足MaxEnt约束。此外,我们采用多项式高效的量子采样技术来增强RBM训练,实现可扩展和高保真的量子态重建。该方法为将rbm应用于基于maxnt的量子层析成像提供了一个计算效率高的框架。此外,我们的方法适用于一般和以前未解决的情况,即从不完全和潜在不可交换的可观测值期望集重建任意混合量子态,同时仍然确保最大熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信