{"title":"Neural Repertoire Behind the World's Most Complex Retina: Neuroanatomy of the Stomatopod Lamina","authors":"Amy Streets, Hayley England, Justin Marshall","doi":"10.1002/cne.70063","DOIUrl":null,"url":null,"abstract":"<p>The lamina is the first optic neuropil and visual information integration station in crustaceans and insects, containing synaptic connections between photoreceptors and first-order interneurons. The lamina circuitry in mantis shrimp (stomatopods) is both interesting and complex, as there are 16 different types of photoreceptors contained within the mid-band region of the eye. Using serial block-face scanning electron microscopy, we have reconstructed photoreceptor terminals and lamina interneurons in two major superfamilies with different visual ecologies. Neurons follow the same general pattern as other crustaceans but with notable differences in gross anatomy from insects. The photoreceptors form bulbous terminals in the lamina, following the same overall connectivity pattern in all lamina cartridges across species examined and eye regions. The photoreceptor terminals themselves appear to be complex, with many large mitochondria, a notable difference between insects and stomatopods. Connectivity between photoreceptors and interneurons, as well as cross-cartridge connections, is estimated based on neuronal overlap. Lamina monopolar cells follow previous research in stomatopods and crustaceans, with a set of common neuron types that may provide the beginning of an opponency circuit. Additionally, neurons that extend beyond their parent cartridge in the midband show a preference for branching between rows within the same visual column of cells, as well as some connections within the same row. This added complexity suggests that the stomatopod lamina performs a unique processing of visual signals versus other crustaceans and insects and provides further evidence for the emerging hypotheses around the processing of information by the scanning visual system of stomatopods.</p>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"533 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.70063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cne.70063","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The lamina is the first optic neuropil and visual information integration station in crustaceans and insects, containing synaptic connections between photoreceptors and first-order interneurons. The lamina circuitry in mantis shrimp (stomatopods) is both interesting and complex, as there are 16 different types of photoreceptors contained within the mid-band region of the eye. Using serial block-face scanning electron microscopy, we have reconstructed photoreceptor terminals and lamina interneurons in two major superfamilies with different visual ecologies. Neurons follow the same general pattern as other crustaceans but with notable differences in gross anatomy from insects. The photoreceptors form bulbous terminals in the lamina, following the same overall connectivity pattern in all lamina cartridges across species examined and eye regions. The photoreceptor terminals themselves appear to be complex, with many large mitochondria, a notable difference between insects and stomatopods. Connectivity between photoreceptors and interneurons, as well as cross-cartridge connections, is estimated based on neuronal overlap. Lamina monopolar cells follow previous research in stomatopods and crustaceans, with a set of common neuron types that may provide the beginning of an opponency circuit. Additionally, neurons that extend beyond their parent cartridge in the midband show a preference for branching between rows within the same visual column of cells, as well as some connections within the same row. This added complexity suggests that the stomatopod lamina performs a unique processing of visual signals versus other crustaceans and insects and provides further evidence for the emerging hypotheses around the processing of information by the scanning visual system of stomatopods.
期刊介绍:
Established in 1891, JCN is the oldest continually published basic neuroscience journal. Historically, as the name suggests, the journal focused on a comparison among species to uncover the intricacies of how the brain functions. In modern times, this research is called systems neuroscience where animal models are used to mimic core cognitive processes with the ultimate goal of understanding neural circuits and connections that give rise to behavioral patterns and different neural states.
Research published in JCN covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of nervous systems in species with an emphasis on the way that species adaptations inform about the function or organization of the nervous systems, rather than on their evolution per se.
JCN publishes primary research articles and critical commentaries and review-type articles offering expert insight in to cutting edge research in the field of systems neuroscience; a complete list of contribution types is given in the Author Guidelines. For primary research contributions, only full-length investigative reports are desired; the journal does not accept short communications.