Andrew R. Kim, Chloe F. Doiron, Fernando J. Vega, Jaeyeon Yu, Alex M. Boehm, Joseph P. Klesko, Igal Brener, Raktim Sarma, Alexander Cerjan, Taisuke Ohta
{"title":"Imaging Photonic Resonances within an All-Dielectric Metasurface via Photoelectron Emission Microscopy","authors":"Andrew R. Kim, Chloe F. Doiron, Fernando J. Vega, Jaeyeon Yu, Alex M. Boehm, Joseph P. Klesko, Igal Brener, Raktim Sarma, Alexander Cerjan, Taisuke Ohta","doi":"10.1002/adpr.70022","DOIUrl":null,"url":null,"abstract":"<p><b>All-Dielectric Metasurfaces</b>\n </p><p>Confinement of light within nanostructures of increasingly smaller sizes has resulted in ever more precise control of light-matter interactions. In article number 2400223, Taisuke Ohta and co-workers demonstrate near-field imaging of volume-type photonic resonances within a dielectric metasurface using photoelectron emission microscopy. This imaging approach, utilizing far-field excitation and sub-optical wavelength spatial resolution, offers a new avenue for examining light–matter interactions within dielectric nanophotonic systems.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.70022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.70022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
All-Dielectric Metasurfaces
Confinement of light within nanostructures of increasingly smaller sizes has resulted in ever more precise control of light-matter interactions. In article number 2400223, Taisuke Ohta and co-workers demonstrate near-field imaging of volume-type photonic resonances within a dielectric metasurface using photoelectron emission microscopy. This imaging approach, utilizing far-field excitation and sub-optical wavelength spatial resolution, offers a new avenue for examining light–matter interactions within dielectric nanophotonic systems.