Low-Loss Parowax-Imprinted Diffractive Neural Network for Orbital Angular Momentum Terahertz Holographic Imaging

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wei Jia, Miguel A. Gomez, Steve Blair, Michael A. Scarpulla, Berardi Sensale-Rodriguez
{"title":"Low-Loss Parowax-Imprinted Diffractive Neural Network for Orbital Angular Momentum Terahertz Holographic Imaging","authors":"Wei Jia,&nbsp;Miguel A. Gomez,&nbsp;Steve Blair,&nbsp;Michael A. Scarpulla,&nbsp;Berardi Sensale-Rodriguez","doi":"10.1002/adpr.202400169","DOIUrl":null,"url":null,"abstract":"<p>\nThe helical phase front of orbital angular momentum (OAM) waves offer additional multiplexing degree-of-freedom to increase the capacity of communication systems in the terahertz domain, which in turn can significantly benefit forthcoming high-speed wireless sixth-generation communication networks. This work introduces a diffractive neural network approach for recognizing the topological charge of OAM waves and their superposition. Moreover, it is shown that the diffractive network can further enable mathematical operations through the topological charges (TCs) of the superposed OAM waves. The diffractive neural networks (DNN) are fabricated through an imprinting technique with low-loss parowax material. To validate the feasibility of this general approach, experimental demonstrations are conducted, which show that the low-loss parowax DNN effectively detects the TCs of the OAM waves and display them in a numerical format.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400169","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202400169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The helical phase front of orbital angular momentum (OAM) waves offer additional multiplexing degree-of-freedom to increase the capacity of communication systems in the terahertz domain, which in turn can significantly benefit forthcoming high-speed wireless sixth-generation communication networks. This work introduces a diffractive neural network approach for recognizing the topological charge of OAM waves and their superposition. Moreover, it is shown that the diffractive network can further enable mathematical operations through the topological charges (TCs) of the superposed OAM waves. The diffractive neural networks (DNN) are fabricated through an imprinting technique with low-loss parowax material. To validate the feasibility of this general approach, experimental demonstrations are conducted, which show that the low-loss parowax DNN effectively detects the TCs of the OAM waves and display them in a numerical format.

Abstract Image

Abstract Image

Abstract Image

用于轨道角动量太赫兹全息成像的低损耗腮蜡印迹衍射神经网络
轨道角动量(OAM)波的螺旋相位前提供了额外的多路复用自由度,以增加太赫兹域通信系统的容量,这反过来又可以显著地有利于即将到来的第六代高速无线通信网络。本文介绍了一种用于识别OAM波拓扑电荷及其叠加的衍射神经网络方法。此外,衍射网络还可以通过叠加OAM波的拓扑电荷(TCs)进一步实现数学运算。采用低损耗腮蜡材料印迹技术制备了衍射神经网络(DNN)。为了验证该方法的可行性,进行了实验验证,实验结果表明,低损耗的parwax深度神经网络能够有效地检测出OAM波的tc并以数值形式显示出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信