Advanced Generation of Uncertainty Scenarios to Enhance a Stochastic Day-Ahead Scheduling in a Local Energy Community

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
IET Smart Grid Pub Date : 2025-06-11 DOI:10.1049/stg2.70021
An Thien Huu Nguyen, Truong Hoang Bao Huy, Han Slootweg, Phuong Hong Nguyen
{"title":"Advanced Generation of Uncertainty Scenarios to Enhance a Stochastic Day-Ahead Scheduling in a Local Energy Community","authors":"An Thien Huu Nguyen,&nbsp;Truong Hoang Bao Huy,&nbsp;Han Slootweg,&nbsp;Phuong Hong Nguyen","doi":"10.1049/stg2.70021","DOIUrl":null,"url":null,"abstract":"<p>Local energy communities (LECs) represent a collaborative approach to managing energy resources, where community members share and optimise the use of distributed energy resources (DERs). Hence, they require multiple objective functions to optimise a set of objectives, including economic, environmental, social and technical considerations while addressing the diverse interests of community members and stakeholders. Due to the complexity of LECs and the unpredictability of DERs, real-time operations in LECs often deviate significantly from day-ahead scheduling. To tackle these challenges, this paper presents a stochastic multi-objective optimization framework designed to improve day-ahead scheduling by accounting for forecasting errors in DERs. The proposed method employs advanced scenario generation techniques, including multivariate copulas and quantile forecasting, to capture uncertainties in load demand and renewable production without relying on prior distribution assumptions. The results demonstrate significant improvements in energy bill savings, grid management and user comfort, highlighting the effectiveness of the proposed optimization framework using a real-world dataset from a living lab in the Netherlands.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"8 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.70021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/stg2.70021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Local energy communities (LECs) represent a collaborative approach to managing energy resources, where community members share and optimise the use of distributed energy resources (DERs). Hence, they require multiple objective functions to optimise a set of objectives, including economic, environmental, social and technical considerations while addressing the diverse interests of community members and stakeholders. Due to the complexity of LECs and the unpredictability of DERs, real-time operations in LECs often deviate significantly from day-ahead scheduling. To tackle these challenges, this paper presents a stochastic multi-objective optimization framework designed to improve day-ahead scheduling by accounting for forecasting errors in DERs. The proposed method employs advanced scenario generation techniques, including multivariate copulas and quantile forecasting, to capture uncertainties in load demand and renewable production without relying on prior distribution assumptions. The results demonstrate significant improvements in energy bill savings, grid management and user comfort, highlighting the effectiveness of the proposed optimization framework using a real-world dataset from a living lab in the Netherlands.

基于不确定性情景先进生成的局部能源社区随机日前调度
地方能源社区(lec)代表了一种管理能源的协作方法,社区成员共享和优化分布式能源(der)的使用。因此,它们需要多个目标功能来优化一系列目标,包括经济、环境、社会和技术方面的考虑,同时解决社区成员和利益相关者的不同利益。由于lecc的复杂性和DERs的不可预测性,lecc的实时操作往往与日前调度严重偏离。为了解决这些问题,本文提出了一个随机多目标优化框架,旨在通过考虑DERs的预测误差来改进日前调度。该方法采用先进的场景生成技术,包括多元copula和分位数预测,以捕获负载需求和可再生能源生产中的不确定性,而不依赖于先验分布假设。结果表明,在能源账单节约、电网管理和用户舒适度方面有了显著的改善,并突出了所提出的优化框架的有效性,该框架使用了来自荷兰生活实验室的真实世界数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Smart Grid
IET Smart Grid Computer Science-Computer Networks and Communications
CiteScore
6.70
自引率
4.30%
发文量
41
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信