Analysis of Exponential Correlation Matrices for Massive MIMO Systems

IF 4.4 3区 计算机科学 Q2 TELECOMMUNICATIONS
Sateeshkrishna Dhuli;Said Kouachi;Abhay Kumar Sah;Stefan Werner
{"title":"Analysis of Exponential Correlation Matrices for Massive MIMO Systems","authors":"Sateeshkrishna Dhuli;Said Kouachi;Abhay Kumar Sah;Stefan Werner","doi":"10.1109/LCOMM.2025.3561089","DOIUrl":null,"url":null,"abstract":"This letter proposes an efficient method for calculating the eigenvalues of large-scale exponential correlation matrices by leveraging tridiagonal matrix theory. The approach explicitly factorizes the characteristic polynomial into two lower-degree polynomials, preserving the distinction between odd and even matrix orders without resorting to approximations. The ability to efficiently compute these eigenvalues is critical for optimizing channel capacity, transmit beamforming, and other key operations in massive multiple-input multiple-output (MIMO) systems, which are essential for improving data rates, reliability, and spectral efficiency in wireless communications. This work derives the approximate eigenvalues using the Cauchy interlacing theorem. It then validates the accuracy of the proposed eigenvalue expressions by comparing them with existing expressions in the literature and applying them to massive MIMO capacity estimation, showing improved precision.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 6","pages":"1345-1349"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10965716/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter proposes an efficient method for calculating the eigenvalues of large-scale exponential correlation matrices by leveraging tridiagonal matrix theory. The approach explicitly factorizes the characteristic polynomial into two lower-degree polynomials, preserving the distinction between odd and even matrix orders without resorting to approximations. The ability to efficiently compute these eigenvalues is critical for optimizing channel capacity, transmit beamforming, and other key operations in massive multiple-input multiple-output (MIMO) systems, which are essential for improving data rates, reliability, and spectral efficiency in wireless communications. This work derives the approximate eigenvalues using the Cauchy interlacing theorem. It then validates the accuracy of the proposed eigenvalue expressions by comparing them with existing expressions in the literature and applying them to massive MIMO capacity estimation, showing improved precision.
大规模MIMO系统的指数相关矩阵分析
本文提出了一种利用三对角矩阵理论计算大规模指数相关矩阵特征值的有效方法。该方法将特征多项式显式分解为两个低次多项式,在不使用近似的情况下保留了奇数和偶数矩阵阶的区别。有效计算这些特征值的能力对于优化信道容量、传输波束成形和大规模多输入多输出(MIMO)系统中的其他关键操作至关重要,这对于提高无线通信中的数据速率、可靠性和频谱效率至关重要。本文利用柯西交错定理推导出近似特征值。然后,通过将所提出的特征值表达式与文献中的现有表达式进行比较,并将其应用于大规模MIMO容量估计,验证了所提出的特征值表达式的准确性,显示出更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信