Ruixin Chen , Qibin Wang , Ruimin Shen , Zeqian Gui , Yuhang Yan , Min Tang , Zhiwei Chen , Zungui Shao , Gaofeng Zheng
{"title":"Green and efficient electrospinning of ethyl cellulose-based nanofibrous membrane for high-performance and antibacterial air filtration","authors":"Ruixin Chen , Qibin Wang , Ruimin Shen , Zeqian Gui , Yuhang Yan , Min Tang , Zhiwei Chen , Zungui Shao , Gaofeng Zheng","doi":"10.1016/j.carbpol.2025.123893","DOIUrl":null,"url":null,"abstract":"<div><div>The environmentally friendly, economical, and efficient production of high-performance and multifunctional bio-based air filter membranes is crucial for the protection of human health and sustainable development. However, this endeavor is significantly limited by the current gap in material selection and process routes. This study proposes a strategy for advanced functionalization and structural optimization of ethyl cellulose (EC) to effectively develop a high-performance, fully bio-based air filter membrane exhibiting superior antibacterial properties. Through the minimal interference method, konjac glucomannan (KGM) and curcumin (Cur) were blended with EC, which preserved the bimodal fibers to the highest degree. By green electrospinning in one step, the quality factor of EC/KGM/Cur membranes reached 0.101 Pa<sup>−1</sup>, the antibacterial activity against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em> reached >99.6 %, and the productivity of EC/KGM/Cur membranes prepared by using sheath gas was increased by almost 14.73 times. This study offers a sustainable, scalable, and versatile manufacturing approach for air filters and thus a promising solution to the urgent need for environmentally friendly and efficient filter systems.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"366 ","pages":"Article 123893"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725006769","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The environmentally friendly, economical, and efficient production of high-performance and multifunctional bio-based air filter membranes is crucial for the protection of human health and sustainable development. However, this endeavor is significantly limited by the current gap in material selection and process routes. This study proposes a strategy for advanced functionalization and structural optimization of ethyl cellulose (EC) to effectively develop a high-performance, fully bio-based air filter membrane exhibiting superior antibacterial properties. Through the minimal interference method, konjac glucomannan (KGM) and curcumin (Cur) were blended with EC, which preserved the bimodal fibers to the highest degree. By green electrospinning in one step, the quality factor of EC/KGM/Cur membranes reached 0.101 Pa−1, the antibacterial activity against Escherichia coli and Staphylococcus aureus reached >99.6 %, and the productivity of EC/KGM/Cur membranes prepared by using sheath gas was increased by almost 14.73 times. This study offers a sustainable, scalable, and versatile manufacturing approach for air filters and thus a promising solution to the urgent need for environmentally friendly and efficient filter systems.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.