Moisture-mediated freeze-thaw degradation in bamboo from cellulose hydration to macroscale fracture

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Jian Gan , Yahui Zhang , Qiuqin Lin , Wenji Yu
{"title":"Moisture-mediated freeze-thaw degradation in bamboo from cellulose hydration to macroscale fracture","authors":"Jian Gan ,&nbsp;Yahui Zhang ,&nbsp;Qiuqin Lin ,&nbsp;Wenji Yu","doi":"10.1016/j.carbpol.2025.123884","DOIUrl":null,"url":null,"abstract":"<div><div>Bamboo, a sustainable material with an excellent strength-to-weight ratio, faces durability challenges in cold climates due to freeze-thaw damage induced by moisture-phase transitions. This study aims to characterize moisture-dependent structural and mechanical evolutions in bamboo fibers across air-dried (Dry<img>B), fiber saturation point (FSP-B), and water-saturated (WS-B) states under ultra-low temperatures. Integrated SEM, SAXS, and mechanical analyses reveal that free water in WS-B generates interfacial stresses via ice crystal expansion, causing macroscale cracks along vascular bundles, while nanoconfined ice crystallization of bound water in FSP-B at −45 °C increases microfibril porosity by 15 %. Cyclic freeze-thaw treatments induce hemicellulose hydrolysis and microfibril disorientation, reducing crystallinity from 85.6 % to 66.8 % and tensile strength by 51 %. Below the FSP, cryogenic strengthening occurs with a 4 % bending strength increase per 5 % moisture gain due to ice-reinforced lumens, whereas post-FSP saturation accelerates damage, with 30-cycle strength retention of 86.5 % (FSP-B) versus 83.5 % (WS-B). Identifying bound water as a nanoscale fibril regulator and free water as a macroscopic fracture initiator, this work suggests moisture control below the FSP to mitigate freeze-thaw damage and leverage ice-mediated reinforcement for frost-resistant bamboo composites and ice-templated bio composites in cold-climate applications, providing a framework for optimizing bio-based material durability in cryogenic environments.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"366 ","pages":"Article 123884"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725006678","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Bamboo, a sustainable material with an excellent strength-to-weight ratio, faces durability challenges in cold climates due to freeze-thaw damage induced by moisture-phase transitions. This study aims to characterize moisture-dependent structural and mechanical evolutions in bamboo fibers across air-dried (DryB), fiber saturation point (FSP-B), and water-saturated (WS-B) states under ultra-low temperatures. Integrated SEM, SAXS, and mechanical analyses reveal that free water in WS-B generates interfacial stresses via ice crystal expansion, causing macroscale cracks along vascular bundles, while nanoconfined ice crystallization of bound water in FSP-B at −45 °C increases microfibril porosity by 15 %. Cyclic freeze-thaw treatments induce hemicellulose hydrolysis and microfibril disorientation, reducing crystallinity from 85.6 % to 66.8 % and tensile strength by 51 %. Below the FSP, cryogenic strengthening occurs with a 4 % bending strength increase per 5 % moisture gain due to ice-reinforced lumens, whereas post-FSP saturation accelerates damage, with 30-cycle strength retention of 86.5 % (FSP-B) versus 83.5 % (WS-B). Identifying bound water as a nanoscale fibril regulator and free water as a macroscopic fracture initiator, this work suggests moisture control below the FSP to mitigate freeze-thaw damage and leverage ice-mediated reinforcement for frost-resistant bamboo composites and ice-templated bio composites in cold-climate applications, providing a framework for optimizing bio-based material durability in cryogenic environments.
水分介导的竹材冻融降解从纤维素水化到宏观断裂
竹子是一种具有优异强度重量比的可持续材料,在寒冷气候下由于湿气相变引起的冻融损伤而面临耐久性挑战。本研究旨在表征超低温下竹纤维在风干(DryB)、纤维饱和点(FSP-B)和水饱和(WS-B)状态下的水分依赖结构和力学演化。综合SEM, SAXS和力学分析表明,WS-B中的自由水通过冰晶膨胀产生界面应力,导致沿维管束的宏观尺度裂纹,而FSP-B中束缚水在- 45°C下的纳米限制冰结晶使微纤维孔隙率增加15%。循环冻融处理导致半纤维素水解和微纤维失向,结晶度从85.6%降低到66.8%,拉伸强度降低51%。在FSP以下,由于冰增强的管腔每增加5%的水分,就会产生4%的抗弯强度增加,而在FSP后饱和会加速损伤,30次循环强度保持率为86.5% (FSP- b),而83.5% (WS-B)。将结合水确定为纳米级纤维调节剂,将自由水确定为宏观断裂引发剂,该研究建议将水分控制在FSP以下,以减轻冻融损伤,并在寒冷气候应用中利用冰介导增强抗冻竹复合材料和冰模板生物复合材料,为优化生物基材料在低温环境中的耐久性提供框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信