A new and flexible class of sharp asymptotic time-uniform confidence sequences

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Felix Gnettner, Claudia Kirch
{"title":"A new and flexible class of sharp asymptotic time-uniform confidence sequences","authors":"Felix Gnettner,&nbsp;Claudia Kirch","doi":"10.1016/j.spl.2025.110462","DOIUrl":null,"url":null,"abstract":"<div><div>Confidence sequences are anytime-valid analogues of classical confidence intervals that do not suffer from multiplicity issues under optional continuation of the data collection. As in classical statistics, asymptotic confidence sequences are a nonparametric tool showing under which high-level assumptions asymptotic coverage is achieved so that they also give a certain robustness guarantee against distributional deviations. In this paper, we propose a new flexible class of confidence sequences yielding sharp asymptotic time-uniform confidence sequences under mild assumptions. Furthermore, we highlight the connection to corresponding sequential testing problems and detail the underlying limit theorem.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"226 ","pages":"Article 110462"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715225001075","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Confidence sequences are anytime-valid analogues of classical confidence intervals that do not suffer from multiplicity issues under optional continuation of the data collection. As in classical statistics, asymptotic confidence sequences are a nonparametric tool showing under which high-level assumptions asymptotic coverage is achieved so that they also give a certain robustness guarantee against distributional deviations. In this paper, we propose a new flexible class of confidence sequences yielding sharp asymptotic time-uniform confidence sequences under mild assumptions. Furthermore, we highlight the connection to corresponding sequential testing problems and detail the underlying limit theorem.
一类新的灵活的尖锐渐近时一致置信序列
置信序列是经典置信区间的任意有效的类似物,在数据收集的可选延续下不会受到多重性问题的影响。与经典统计学一样,渐近置信序列是一种非参数工具,表明在该工具下可以实现高级假设的渐近覆盖,从而对分布偏差提供一定的鲁棒性保证。本文提出了一类新的柔性置信序列,在温和的假设条件下,得到了尖锐渐近时一致置信序列。此外,我们强调了与相应的序列测试问题的联系,并详细说明了潜在的极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics & Probability Letters
Statistics & Probability Letters 数学-统计学与概率论
CiteScore
1.60
自引率
0.00%
发文量
173
审稿时长
6 months
期刊介绍: Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature. Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission. The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability. The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信