Han Bao , Chenlin Ji , Hengxing Lan , Han Zheng , Changgen Yan , Jianbing Peng , Langping Li , Juntian Wang , Guanmiao Guo
{"title":"Slope effects on soil moisture migration and evolution in shallow layers of loess high-fill slopes in the Gully Land Consolidation","authors":"Han Bao , Chenlin Ji , Hengxing Lan , Han Zheng , Changgen Yan , Jianbing Peng , Langping Li , Juntian Wang , Guanmiao Guo","doi":"10.1016/j.catena.2025.109206","DOIUrl":null,"url":null,"abstract":"<div><div>Many loess high-fill slopes have been constructed in the Loess Plateau of China, which are susceptible to shallow diseases and disasters owing to water migration and evolution. The existence of a slope surface profoundly affects soil moisture dynamics, thus potentially altering the slope instability. According to long-term, multi-point, and multi-depth on-site monitoring, shallow soil moisture’s migration and evolution characteristics under slope effects were investigated. The influence of the microtopography on the slope effects is also clarified. The results showed that the characteristics under sloped conditions significantly differed from those under flat terrain conditions. During water infiltration and redistribution, the sloping topography shifts the depth of influence of rainfall infiltration downward; the lateral flow duration and the peak of the change rate of moisture content (CRMC) at the slope step were significantly smaller than those at the slope face. During the drainage stage, the slope effect enhances the draining capacity and range of soil layers, with the slope step exhibiting greater draining efficiency. Besides, the slope effect reduces the magnitude and amplitude of soil water potential gradients (SWPG), thereby weakening the intensity of driving force evolution. Among the factors influencing the slope effect, large rainfall events and root plant development promote the slope effects, whereas high initial water content and shallow groundwater tend to suppress it. These findings are of great significance for advancing the understanding of slope soil moisture migration patterns and ensuring the stability of shallow slope layers.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"258 ","pages":"Article 109206"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816225005089","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many loess high-fill slopes have been constructed in the Loess Plateau of China, which are susceptible to shallow diseases and disasters owing to water migration and evolution. The existence of a slope surface profoundly affects soil moisture dynamics, thus potentially altering the slope instability. According to long-term, multi-point, and multi-depth on-site monitoring, shallow soil moisture’s migration and evolution characteristics under slope effects were investigated. The influence of the microtopography on the slope effects is also clarified. The results showed that the characteristics under sloped conditions significantly differed from those under flat terrain conditions. During water infiltration and redistribution, the sloping topography shifts the depth of influence of rainfall infiltration downward; the lateral flow duration and the peak of the change rate of moisture content (CRMC) at the slope step were significantly smaller than those at the slope face. During the drainage stage, the slope effect enhances the draining capacity and range of soil layers, with the slope step exhibiting greater draining efficiency. Besides, the slope effect reduces the magnitude and amplitude of soil water potential gradients (SWPG), thereby weakening the intensity of driving force evolution. Among the factors influencing the slope effect, large rainfall events and root plant development promote the slope effects, whereas high initial water content and shallow groundwater tend to suppress it. These findings are of great significance for advancing the understanding of slope soil moisture migration patterns and ensuring the stability of shallow slope layers.
期刊介绍:
Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment.
Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.