Private image synthesis of latent diffusion model with the ciphertext of prompt

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Guanghui He , Yanli Ren , Gaojian Li , Guorui Feng , Xinpeng Zhang
{"title":"Private image synthesis of latent diffusion model with the ciphertext of prompt","authors":"Guanghui He ,&nbsp;Yanli Ren ,&nbsp;Gaojian Li ,&nbsp;Guorui Feng ,&nbsp;Xinpeng Zhang","doi":"10.1016/j.neunet.2025.107678","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence generated content (AIGC) has made significant strides in enabling users to create various realistic visual content, such as images, videos and audio. Diffusion models have shown promise in generating higher-quality images when the user inputs the prompts. However, the prompts and the generated images may contain some privacy information. To address these concerns, this paper proposes a privacy-preserving image synthesis protocol with the ciphertext of prompt. Specifically, we employ differential privacy-stochastic gradient descent (DP-SGD) to update parameters within the Unet instead of the entire parameters, while protecting the privacy of the generated image without decreasing its quality. To ensure prompt confidentiality, we utilize function encryption and design a secure cross-attention for subsequent propagation. Furthermore, based on the theoretical analysis and experimental results, the generated images under the ciphertext prompts can achieve differential privacy, and were almost identical to those under the plaintext prompts.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"190 ","pages":"Article 107678"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025005581","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence generated content (AIGC) has made significant strides in enabling users to create various realistic visual content, such as images, videos and audio. Diffusion models have shown promise in generating higher-quality images when the user inputs the prompts. However, the prompts and the generated images may contain some privacy information. To address these concerns, this paper proposes a privacy-preserving image synthesis protocol with the ciphertext of prompt. Specifically, we employ differential privacy-stochastic gradient descent (DP-SGD) to update parameters within the Unet instead of the entire parameters, while protecting the privacy of the generated image without decreasing its quality. To ensure prompt confidentiality, we utilize function encryption and design a secure cross-attention for subsequent propagation. Furthermore, based on the theoretical analysis and experimental results, the generated images under the ciphertext prompts can achieve differential privacy, and were almost identical to those under the plaintext prompts.

Abstract Image

带有提示密文的隐扩散模型的私有图像合成
人工智能生成内容(AIGC)在使用户能够创建各种逼真的视觉内容(如图像、视频和音频)方面取得了重大进展。当用户输入提示时,扩散模型有望生成更高质量的图像。但是,提示和生成的图像可能包含一些隐私信息。针对这些问题,本文提出了一种以提示符为密文的保护隐私的图像合成协议。具体来说,我们采用差分隐私-随机梯度下降(DP-SGD)来更新Unet内的参数,而不是整个参数,同时在不降低图像质量的情况下保护生成图像的隐私。为了保证及时的保密性,我们使用了功能加密,并设计了一个安全的交叉关注,以便后续传播。此外,基于理论分析和实验结果,在密文提示下生成的图像可以实现差异隐私,并且与明文提示下生成的图像几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信