Microemulsion method synthesis of highly porous LiMn2O4 for selective lithium extraction from Salt Lakes Brine

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Ying Hu, Yanan Wei, Qian Zhang, Wenmeihui Zhao, Xinyu Xu, Rongmei Liu, Guixiang Qian, Chao Yang
{"title":"Microemulsion method synthesis of highly porous LiMn2O4 for selective lithium extraction from Salt Lakes Brine","authors":"Ying Hu,&nbsp;Yanan Wei,&nbsp;Qian Zhang,&nbsp;Wenmeihui Zhao,&nbsp;Xinyu Xu,&nbsp;Rongmei Liu,&nbsp;Guixiang Qian,&nbsp;Chao Yang","doi":"10.1016/j.jssc.2025.125473","DOIUrl":null,"url":null,"abstract":"<div><div>The spinel-structured LiMn<sub>2</sub>O<sub>4</sub> (LMO) is widely recognized as a promising candidate for electrochemical lithium extraction owing to its unique three-dimensional lithium-ion diffusion pathways. However, the significant agglomeration of existing commercial lithium manganese oxide (C-LMO) poses a critical limitation on its lithium-ion loading capacity during the lithium extraction process. In this study, we successfully synthesized nano-scale pure-phase spinel LMO within a CTAB–C<sub>6</sub>H<sub>12</sub>–C<sub>5</sub>H<sub>11</sub>OH–H<sub>2</sub>O microemulsion system. The results indicate that the LMO prepared via the microemulsion method exhibits abundant pore structures, which not only significantly reduce the Li<sup>+</sup> transport distance but also enhance the contact area with the electrolyte. After 60 charge-discharge cycles, the material retains 91 % of its initial specific capacity, with a stable Coulombic efficiency ranging from 97 % to 99 %.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"350 ","pages":"Article 125473"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625002968","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The spinel-structured LiMn2O4 (LMO) is widely recognized as a promising candidate for electrochemical lithium extraction owing to its unique three-dimensional lithium-ion diffusion pathways. However, the significant agglomeration of existing commercial lithium manganese oxide (C-LMO) poses a critical limitation on its lithium-ion loading capacity during the lithium extraction process. In this study, we successfully synthesized nano-scale pure-phase spinel LMO within a CTAB–C6H12–C5H11OH–H2O microemulsion system. The results indicate that the LMO prepared via the microemulsion method exhibits abundant pore structures, which not only significantly reduce the Li+ transport distance but also enhance the contact area with the electrolyte. After 60 charge-discharge cycles, the material retains 91 % of its initial specific capacity, with a stable Coulombic efficiency ranging from 97 % to 99 %.
微乳液法合成高孔LiMn2O4选择性提锂盐湖卤水
尖晶石结构的LiMn2O4 (LMO)由于其独特的三维锂离子扩散途径而被广泛认为是电化学锂提取的有前途的候选者。然而,现有商用锰酸锂(C-LMO)在锂提取过程中存在明显的团聚现象,严重限制了其装载锂离子的能力。在本研究中,我们成功地在CTAB-C6H12-C5H11OH-H2O微乳液体系中合成了纳米级纯相尖晶石LMO。结果表明,微乳液法制备的LMO具有丰富的孔隙结构,不仅显著减小了Li+的传输距离,而且增加了与电解质的接触面积。经过60次充放电循环后,材料保持了91%的初始比容量,库仑效率稳定在97% ~ 99%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信