Fields generated by points on superelliptic curves

IF 0.6 3区 数学 Q3 MATHEMATICS
Lea Beneish , Christopher Keyes
{"title":"Fields generated by points on superelliptic curves","authors":"Lea Beneish ,&nbsp;Christopher Keyes","doi":"10.1016/j.jnt.2025.04.011","DOIUrl":null,"url":null,"abstract":"<div><div>We give an asymptotic lower bound on the number of field extensions generated by algebraic points on superelliptic curves over <span><math><mi>Q</mi></math></span> with fixed degree <em>n</em> and discriminant bounded by <em>X</em>. For <em>C</em> a fixed such curve given by an affine equation <span><math><msup><mrow><mi>y</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> where <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>d</mi><mo>=</mo><mi>deg</mi><mo>⁡</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mi>m</mi></math></span>, we find that for all degrees <em>n</em> divisible by <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>m</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> and sufficiently large, the number of such fields is asymptotically bounded below by <span><math><msup><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msup></math></span>, where <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. We then give geometric heuristics suggesting that for n not divisible by <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>m</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span>, degree <em>n</em> points may be less abundant than those for which <em>n</em> is divisible by <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>m</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> and provide an example of conditions under which a curve is known to have finitely many points of certain degrees.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 380-421"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X2500143X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give an asymptotic lower bound on the number of field extensions generated by algebraic points on superelliptic curves over Q with fixed degree n and discriminant bounded by X. For C a fixed such curve given by an affine equation ym=f(x) where m2 and d=degf(x)m, we find that for all degrees n divisible by gcd(m,d) and sufficiently large, the number of such fields is asymptotically bounded below by Xδn, where δn1/m2 as n. We then give geometric heuristics suggesting that for n not divisible by gcd(m,d), degree n points may be less abundant than those for which n is divisible by gcd(m,d) and provide an example of conditions under which a curve is known to have finitely many points of certain degrees.
由超椭圆曲线上的点生成的场
对于由仿射方程ym=f(x)给出且m≥2且d=deg (f(x)≥m的固定曲线C,我们发现对于所有能被gcd (m,d)整除且足够大的n次,此类场的个数在下渐近有x δn的下界,其中δn→1/m2 = n→∞。然后,我们给出几何启发式,表明对于n不能被gcd (m,d)整除的情况,n次点可能比n能被gcd (m,d)整除的情况少,并提供了已知曲线具有有限多个特定度点的条件示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信