Yueh-Shao Chen , Dan Jeric Arcega Rustia , Shao-Zheng Huang , Jih-Tay Hsu , Ta-Te Lin
{"title":"IoT-based system for individual dairy cow feeding behavior monitoring using cow face recognition and edge computing","authors":"Yueh-Shao Chen , Dan Jeric Arcega Rustia , Shao-Zheng Huang , Jih-Tay Hsu , Ta-Te Lin","doi":"10.1016/j.iot.2025.101674","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an IoT-enabled cow face recognition system leveraging edge computing to enable real-time, automated monitoring of individual cow feeding behavior. The system integrates a lightweight YOLOv4-tiny model for cow face detection with MobileNetV2 for feature extraction, optimized for embedded devices with limited computational power. A key innovation is the incorporation of few-shot learning (FSL), allowing the system to adapt efficiently to newly introduced cows with minimal training data. The algorithm achieved robust performance, with an F1-score of 0.98 for detection and a recognition accuracy of 0.97 using FSL. Feeding times estimated by the system were validated against manually observed data, demonstrating high precision with a mean absolute error (MAE) of 1.7 min per cow. Long-term experiments conducted under varying seasonal conditions showcased the system's effectiveness in monitoring feeding behavior year-round. Results revealed significant seasonal differences, with cows feeding longer in winter (197.0 min/day) than in summer (115.5 min/day), likely due to the effects of heat stress during warmer months. This IoT-driven system offers scalable, non-invasive monitoring solutions for dairy farm environments, enabling real-time insights to support herd management, early health issue detection, and individualized feeding strategies. By integrating advanced IoT technologies with agricultural practices, this system provides a pathway to enhancing productivity and animal welfare in precision dairy farming.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"33 ","pages":"Article 101674"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254266052500188X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an IoT-enabled cow face recognition system leveraging edge computing to enable real-time, automated monitoring of individual cow feeding behavior. The system integrates a lightweight YOLOv4-tiny model for cow face detection with MobileNetV2 for feature extraction, optimized for embedded devices with limited computational power. A key innovation is the incorporation of few-shot learning (FSL), allowing the system to adapt efficiently to newly introduced cows with minimal training data. The algorithm achieved robust performance, with an F1-score of 0.98 for detection and a recognition accuracy of 0.97 using FSL. Feeding times estimated by the system were validated against manually observed data, demonstrating high precision with a mean absolute error (MAE) of 1.7 min per cow. Long-term experiments conducted under varying seasonal conditions showcased the system's effectiveness in monitoring feeding behavior year-round. Results revealed significant seasonal differences, with cows feeding longer in winter (197.0 min/day) than in summer (115.5 min/day), likely due to the effects of heat stress during warmer months. This IoT-driven system offers scalable, non-invasive monitoring solutions for dairy farm environments, enabling real-time insights to support herd management, early health issue detection, and individualized feeding strategies. By integrating advanced IoT technologies with agricultural practices, this system provides a pathway to enhancing productivity and animal welfare in precision dairy farming.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.