Rational design of peptides for epitope imprinting of polynorepinephrine: A plasmonic and machine learning integrated approach

IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology
Davide Sestaioni , Giulia Ciacci , Andrea Barucci , Pasquale Palladino , Simona Scarano
{"title":"Rational design of peptides for epitope imprinting of polynorepinephrine: A plasmonic and machine learning integrated approach","authors":"Davide Sestaioni ,&nbsp;Giulia Ciacci ,&nbsp;Andrea Barucci ,&nbsp;Pasquale Palladino ,&nbsp;Simona Scarano","doi":"10.1016/j.biosx.2025.100638","DOIUrl":null,"url":null,"abstract":"<div><div>Molecularly Imprinted Polynorepinephrine (MIPNE) has demonstrated superior performance for mimetic receptors production, facilitating their integration into techniques like Surface Plasmon Resonance (SPR), Biomimetic Enzyme-Linked ImmunoSorbent Assay (BELISA), and Bio-Layer Interferometry (BLI). Here we developed a multiplexed Localized Surface Plasmon Resonance (LSPR) assay to face the selection of appropriate epitope sequences for protein imprinting, a critical factor in optimizing MIPNE efficiency. The plasmonic properties of gold nanoparticles formed on MIPNE were used to classify epitopes as functional (<strong><em>F</em></strong>), uncertain (<strong><em>U</em></strong>), or dysfunctional (<strong><em>D</em></strong>). Feature extraction and machine learning analysis identified key physico-chemical descriptors influencing imprinting efficiency. Subsequent SPR testing confirmed the correlation between epitope selection and receptor performance. This study provides the first systematic approach for epitope selection in MIPNE, paving the way for their improved design and application in bioanalytics and biosensing.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"26 ","pages":"Article 100638"},"PeriodicalIF":10.6100,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Molecularly Imprinted Polynorepinephrine (MIPNE) has demonstrated superior performance for mimetic receptors production, facilitating their integration into techniques like Surface Plasmon Resonance (SPR), Biomimetic Enzyme-Linked ImmunoSorbent Assay (BELISA), and Bio-Layer Interferometry (BLI). Here we developed a multiplexed Localized Surface Plasmon Resonance (LSPR) assay to face the selection of appropriate epitope sequences for protein imprinting, a critical factor in optimizing MIPNE efficiency. The plasmonic properties of gold nanoparticles formed on MIPNE were used to classify epitopes as functional (F), uncertain (U), or dysfunctional (D). Feature extraction and machine learning analysis identified key physico-chemical descriptors influencing imprinting efficiency. Subsequent SPR testing confirmed the correlation between epitope selection and receptor performance. This study provides the first systematic approach for epitope selection in MIPNE, paving the way for their improved design and application in bioanalytics and biosensing.
多去甲肾上腺素表位印迹肽的合理设计:等离子体和机器学习的综合方法
分子印迹多去甲肾上腺素(MIPNE)在模拟受体的生产中表现出优异的性能,促进了它们与表面等离子体共振(SPR)、仿生酶联免疫吸附测定(BELISA)和生物层干涉测定(BLI)等技术的整合。在这里,我们开发了一种多路局部表面等离子体共振(LSPR)方法来选择合适的表位序列进行蛋白质印迹,这是优化MIPNE效率的关键因素。在MIPNE上形成的金纳米颗粒的等离子体性质被用来将表位分类为功能性(F)、不确定性(U)或功能失调(D)。特征提取和机器学习分析确定了影响印迹效率的关键物理化学描述符。随后的SPR测试证实了表位选择与受体性能之间的相关性。本研究为MIPNE的表位选择提供了第一个系统的方法,为其在生物分析和生物传感中的改进设计和应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors and Bioelectronics: X
Biosensors and Bioelectronics: X Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
166
审稿时长
54 days
期刊介绍: Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信