A homological approach to chromatic complexity of algebraic K-theory

IF 0.7 2区 数学 Q2 MATHEMATICS
Gabriel Angelini-Knoll , J.D. Quigley
{"title":"A homological approach to chromatic complexity of algebraic K-theory","authors":"Gabriel Angelini-Knoll ,&nbsp;J.D. Quigley","doi":"10.1016/j.jpaa.2025.108027","DOIUrl":null,"url":null,"abstract":"<div><div>The family of Thom spectra <span><math><mi>y</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> interpolates between the sphere spectrum and the mod two Eilenberg–MacLane spectrum. Computations of Mahowald, Ravenel, Shick, and the authors show that the associative ring spectrum <span><math><mi>y</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> has type <em>n</em>. Using trace methods, we give evidence that algebraic K-theory preserves this chromatic complexity. Our approach sheds light on the chromatic complexity of topological negative cyclic homology and topological peridic cyclic homology, which approximate algebraic K-theory and are of independent interest. Our main contribution is a homological approach that can be applied in great generality, such as to associative ring spectra <em>R</em> without additional structure whose coefficient rings are not completely understood.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108027"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001665","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The family of Thom spectra y(n) interpolates between the sphere spectrum and the mod two Eilenberg–MacLane spectrum. Computations of Mahowald, Ravenel, Shick, and the authors show that the associative ring spectrum y(n) has type n. Using trace methods, we give evidence that algebraic K-theory preserves this chromatic complexity. Our approach sheds light on the chromatic complexity of topological negative cyclic homology and topological peridic cyclic homology, which approximate algebraic K-theory and are of independent interest. Our main contribution is a homological approach that can be applied in great generality, such as to associative ring spectra R without additional structure whose coefficient rings are not completely understood.
代数k理论色复杂度的同调方法
Thom谱族y(n)插补在球谱和模二Eilenberg-MacLane谱之间。Mahowald, Ravenel, Shick和作者的计算表明,结合环谱y(n)具有n型。使用迹方法,我们给出了代数k理论保留这种色复杂度的证据。我们的方法揭示了拓扑负循环同调和拓扑周期循环同调的色复杂度,它们近似于代数k理论,具有独立的研究意义。我们的主要贡献是一种可以广泛应用的同调方法,例如不需要附加结构的共轭环谱R,其系数环还不能完全理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信