Numerical investigation and validation of multiphase flow in annular jet pump—a mixture model approach

IF 5.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Sadia Riaz , Jussi Aaltonen , Tobias Pinkse , Kari Koskinen
{"title":"Numerical investigation and validation of multiphase flow in annular jet pump—a mixture model approach","authors":"Sadia Riaz ,&nbsp;Jussi Aaltonen ,&nbsp;Tobias Pinkse ,&nbsp;Kari Koskinen","doi":"10.1016/j.jestch.2025.102100","DOIUrl":null,"url":null,"abstract":"<div><div>Slurry transport through pipelines is a common experience of multiphase flows in the mining industry, and there are many suitable CFD-based multiphase models for analysis. The Annular Jet Pump (AJP) is engineered to handle the complex flow dynamics associated with slurry transport, where the interactions between solid particles and the carrier fluid play a crucial role in determining the pumṕs performance. In this study, a multiphase mixture model is employed to simulate the behaviour of the slurry within the AJP, providing insights into the effects of dispersed particle size, dispersed phase concentration, nozzle convergence angle, and primary fluid́s flow rate on pump suction and pressure distribution. The CFD simulations are conducted to predict the performance characteristics, which are then validated against literature data (which is simulated and experimental). Variations in flow variables and turbulence variables are observed at the centreline of the AJP. The results demonstrate that the proposed Annular Jet Pumṕs design achieves efficient slurry transport and highlights the effectiveness of the multiphase mixture model in accurately predicting the pump’s performance under varying operational conditions. The trend in power input variation, the output’s mass flow rate, and Specific Energy Consumption are observed for a range of primary fluid́s volumetric flow rates. This integrated approach offers a comprehensive understanding of the fluid-particle interactions within the pump, contributing to efficient slurry transport systems in industrial applications.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"69 ","pages":"Article 102100"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098625001557","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Slurry transport through pipelines is a common experience of multiphase flows in the mining industry, and there are many suitable CFD-based multiphase models for analysis. The Annular Jet Pump (AJP) is engineered to handle the complex flow dynamics associated with slurry transport, where the interactions between solid particles and the carrier fluid play a crucial role in determining the pumṕs performance. In this study, a multiphase mixture model is employed to simulate the behaviour of the slurry within the AJP, providing insights into the effects of dispersed particle size, dispersed phase concentration, nozzle convergence angle, and primary fluid́s flow rate on pump suction and pressure distribution. The CFD simulations are conducted to predict the performance characteristics, which are then validated against literature data (which is simulated and experimental). Variations in flow variables and turbulence variables are observed at the centreline of the AJP. The results demonstrate that the proposed Annular Jet Pumṕs design achieves efficient slurry transport and highlights the effectiveness of the multiphase mixture model in accurately predicting the pump’s performance under varying operational conditions. The trend in power input variation, the output’s mass flow rate, and Specific Energy Consumption are observed for a range of primary fluid́s volumetric flow rates. This integrated approach offers a comprehensive understanding of the fluid-particle interactions within the pump, contributing to efficient slurry transport systems in industrial applications.
环形喷射泵内多相流动的数值研究与验证——混合模型方法
矿浆管道输送是矿山多相流的常见经验,有许多适合的基于cfd的多相流模型进行分析。环形喷射泵(AJP)设计用于处理与浆液输送相关的复杂流动动力学,其中固体颗粒与载液之间的相互作用在决定pumṕs性能方面起着至关重要的作用。在这项研究中,采用多相混合模型来模拟AJP内浆体的行为,从而深入了解分散粒度、分散相浓度、喷嘴收敛角和一次流体流速对泵吸力和压力分布的影响。通过CFD模拟来预测性能特性,然后对照文献数据(模拟和实验)进行验证。在AJP中线观察到流动变量和湍流变量的变化。结果表明,所提出的环形射流Pumṕs设计实现了高效的浆液输送,并突出了多相混合模型在准确预测泵在不同运行条件下性能方面的有效性。在一定的一次流体体积流量范围内,观察了功率输入变化、输出质量流量和比能耗的趋势。这种综合方法提供了对泵内流体-颗粒相互作用的全面了解,有助于在工业应用中高效的泥浆输送系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Science and Technology-An International Journal-Jestech
Engineering Science and Technology-An International Journal-Jestech Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.20
自引率
3.50%
发文量
153
审稿时长
22 days
期刊介绍: Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology. The scope of JESTECH includes a wide spectrum of subjects including: -Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing) -Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences) -Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信