Wang Xiao , Haojie Sun , Hangyu Ma , Guoyao Yu , Weijie Zhao , Ercang Luo
{"title":"Advance on combustion-driven free piston Stirling generator with helical tube heat exchanger","authors":"Wang Xiao , Haojie Sun , Hangyu Ma , Guoyao Yu , Weijie Zhao , Ercang Luo","doi":"10.1016/j.energy.2025.136939","DOIUrl":null,"url":null,"abstract":"<div><div>Recent years witness dire need of high-performance portable power supplies due to harsh environment and thriving of outdoor recreation. Free-Piston Stirling Generator (FPSG) featuring in compact size, high theoretical efficiency, and multi-heat-source adaptivity, presents as a good candidate. The research proposes an innovative design of a helical-tube bundle heat exchanger, for the sake of a better coupling with a porous media evaporative combustor (PMEC). A balance between lightweight design and thermal efficiency has been achieved through thermoacoustics-based nodal analysis, on operating frequency and hot-end heat exchanger. Further investigation using three-dimensional numerical simulations of combustion-coupled oscillatory flow revealed significant three-dimensional loss features that were underestimated in the quasi-one-dimensional computations. The experiments demonstrated a well improved stand-alone specific power of 112 W/kg for the FPSG, and a maximum fuel-to-electric efficiency of 13.9 %, compared with 66.7 W/kg and 11.98 %, respectively, in our previous work. This study provides valuable insights into addressing the challenges of low efficiency in small-scale FPSGs operating at high frequencies, offering guidance for future improvements in portable power solutions.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"331 ","pages":"Article 136939"},"PeriodicalIF":9.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225025812","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent years witness dire need of high-performance portable power supplies due to harsh environment and thriving of outdoor recreation. Free-Piston Stirling Generator (FPSG) featuring in compact size, high theoretical efficiency, and multi-heat-source adaptivity, presents as a good candidate. The research proposes an innovative design of a helical-tube bundle heat exchanger, for the sake of a better coupling with a porous media evaporative combustor (PMEC). A balance between lightweight design and thermal efficiency has been achieved through thermoacoustics-based nodal analysis, on operating frequency and hot-end heat exchanger. Further investigation using three-dimensional numerical simulations of combustion-coupled oscillatory flow revealed significant three-dimensional loss features that were underestimated in the quasi-one-dimensional computations. The experiments demonstrated a well improved stand-alone specific power of 112 W/kg for the FPSG, and a maximum fuel-to-electric efficiency of 13.9 %, compared with 66.7 W/kg and 11.98 %, respectively, in our previous work. This study provides valuable insights into addressing the challenges of low efficiency in small-scale FPSGs operating at high frequencies, offering guidance for future improvements in portable power solutions.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.