Palabos Turret: A particle-resolved numerical framework for settling dynamics of arbitrary-shaped particles

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Taraprasad Bhowmick , Jonas Latt , Yong Wang , Gholamhossein Bagheri
{"title":"Palabos Turret: A particle-resolved numerical framework for settling dynamics of arbitrary-shaped particles","authors":"Taraprasad Bhowmick ,&nbsp;Jonas Latt ,&nbsp;Yong Wang ,&nbsp;Gholamhossein Bagheri","doi":"10.1016/j.compfluid.2025.106696","DOIUrl":null,"url":null,"abstract":"<div><div>Particles transported in fluids are everywhere, occurring for example in indoor air, the atmosphere, the oceans, and engineering applications. In this study, a new three-dimensional numerical framework — the Palabos Turret is presented, which allows fully resolved simulations of the settling dynamics of heavy particles with arbitrary shapes over a wide range of particle Reynolds numbers. The numerical solver is based on the lattice Boltzmann method utilizing immersed-boundary approach and a recursive-regularized collision model to fully resolve the particle–fluid interactions. A predictor–corrector scheme is applied for the robust time integration of the six-degrees-of-freedom (6DOF) rigid-body motion. Particularly, the multi-scale nature arising from the long free-fall distances of a particle is addressed through a dynamic memory allocation scheme allowing for a virtually infinite falling distance. The proposed framework is validated using the analytical and experimental data of freely-falling spheres, ellipsoids, and an irregular volcanic particle in a wide range of Reynolds numbers between <span><math><mrow><mn>5</mn><mspace></mspace><mo>×</mo><mspace></mspace><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>4</mn><mspace></mspace><mo>×</mo><mspace></mspace><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>. For different Reynolds numbers and particle shapes considered, the Palabos Turret shows excellent agreement compared to the theoretical and experimental values of the terminal velocities with a median relative deviation of <span><math><mrow><mo>±</mo><mspace></mspace><mn>1</mn><mo>.</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> and a maximum deviation of <span><math><mrow><mo>±</mo><mspace></mspace><mn>5</mn><mtext>%</mtext></mrow></math></span>. We further present new numerical and experimental results on the settling dynamics of particles of various shapes and sizes. The Palabos Turret also resolves the surface stress distribution on the particles with complex geometry, which enables an in-depth analysis of their translational and rotational dynamics. Therefore, this framework can be used as an invaluable tool to complement experimental data and to overcome the limitations of experiments and analytical models.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"299 ","pages":"Article 106696"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025001562","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Particles transported in fluids are everywhere, occurring for example in indoor air, the atmosphere, the oceans, and engineering applications. In this study, a new three-dimensional numerical framework — the Palabos Turret is presented, which allows fully resolved simulations of the settling dynamics of heavy particles with arbitrary shapes over a wide range of particle Reynolds numbers. The numerical solver is based on the lattice Boltzmann method utilizing immersed-boundary approach and a recursive-regularized collision model to fully resolve the particle–fluid interactions. A predictor–corrector scheme is applied for the robust time integration of the six-degrees-of-freedom (6DOF) rigid-body motion. Particularly, the multi-scale nature arising from the long free-fall distances of a particle is addressed through a dynamic memory allocation scheme allowing for a virtually infinite falling distance. The proposed framework is validated using the analytical and experimental data of freely-falling spheres, ellipsoids, and an irregular volcanic particle in a wide range of Reynolds numbers between 5×101 and 4×104. For different Reynolds numbers and particle shapes considered, the Palabos Turret shows excellent agreement compared to the theoretical and experimental values of the terminal velocities with a median relative deviation of ±1.5% and a maximum deviation of ±5%. We further present new numerical and experimental results on the settling dynamics of particles of various shapes and sizes. The Palabos Turret also resolves the surface stress distribution on the particles with complex geometry, which enables an in-depth analysis of their translational and rotational dynamics. Therefore, this framework can be used as an invaluable tool to complement experimental data and to overcome the limitations of experiments and analytical models.
Palabos炮塔:用于任意形状颗粒沉降动力学的粒子解析数值框架
在流体中传输的颗粒无处不在,例如在室内空气、大气、海洋和工程应用中。在这项研究中,提出了一种新的三维数值框架- Palabos炮塔,它可以在很大的粒子雷诺数范围内完全解析模拟具有任意形状的重粒子的沉降动力学。数值求解基于格子玻尔兹曼方法,利用浸入边界法和递归正则化碰撞模型来全面求解粒子-流体相互作用。针对六自由度刚体运动的鲁棒时间积分问题,提出了一种预测-校正方案。特别是,由粒子的长自由落体距离引起的多尺度性质通过允许几乎无限的落体距离的动态内存分配方案来解决。利用在5×10−1和4×104之间的广泛雷诺数范围内自由落体球体、椭球和不规则火山粒子的分析和实验数据验证了所提出的框架。在考虑不同雷诺数和颗粒形状的情况下,Palabos炮塔的终端速度与理论和实验值非常吻合,中位相对偏差为±1.5%,最大偏差为±5%。我们进一步对不同形状和大小的颗粒的沉降动力学给出了新的数值和实验结果。Palabos炮塔还解决了具有复杂几何形状的颗粒表面应力分布,从而能够深入分析其平移和旋转动力学。因此,这个框架可以作为一个宝贵的工具来补充实验数据,克服实验和分析模型的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信