Yu Wang , Hongmei Zhang , Xingwang Cheng , Xiaonan Mu , Jiaqi Zhang , Xiujun Li
{"title":"Achieving high-performance in TiBw/TC4 composites via introducing two types of boron sources-BNNSs and LaB6","authors":"Yu Wang , Hongmei Zhang , Xingwang Cheng , Xiaonan Mu , Jiaqi Zhang , Xiujun Li","doi":"10.1016/j.compositesa.2025.109096","DOIUrl":null,"url":null,"abstract":"<div><div>Room-temperature brittleness was still an open issue in powder metallurgy discontinuously reinforced titanium matrix composites (DRTiMCs) which was mainly attributed to the addition of brittle ceramic reinforcements and excessive oxygen (O) content to the titanium matrix. Boron nitride nanosheets (BNNSs) is an idea reinforcement in DRTiMCs due to its two-dimensional structure and excellent mechanical property. The present study employed the LaB<sub>6</sub> and 2D-structured BNNSs as hybrid boron sources to address the strength-ductility trade-off in TiB<sub>w</sub>/TC4 (Ti6Al4V) composites. Field-Assisted sintering technique (FAST) in conjunction with hot rolling (HR) was applied to consolidate the composite. The results showed that TC4-based composite exhibited the yield strength of 1339 MPa with fracture elongation of 17.9 % when adding merely 0.1 wt% BNNSs + 0.1 wt% LaB<sub>6</sub> reinforcements, achieving simultaneously enhanced strength (+20 %) and ductility (+38 %) compared with TC4 matrix. In particular, the partial reacted BNNSs provided an obviously crack resistance and damage tolerance capability in composite, while the LaB<sub>6</sub> effectively reduced the concentration of O impurity via <em>in-situ</em> formed La<sub>2</sub>O<sub>3</sub> nano-particles. By employing the <em>in-situ</em> SEM experiment, we solve an existing debate, uncovering the synergistic toughening effect from BNNSs and heterogeneous interface which effectively inhibited the micro-cracks propagation. Together they made positive function that account for the high-performance in DRTiMCs. This study paved a pragmatic approach and valuable insights for addressing the strength-ductility synergy in DRTiMCs.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"198 ","pages":"Article 109096"},"PeriodicalIF":8.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25003902","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Room-temperature brittleness was still an open issue in powder metallurgy discontinuously reinforced titanium matrix composites (DRTiMCs) which was mainly attributed to the addition of brittle ceramic reinforcements and excessive oxygen (O) content to the titanium matrix. Boron nitride nanosheets (BNNSs) is an idea reinforcement in DRTiMCs due to its two-dimensional structure and excellent mechanical property. The present study employed the LaB6 and 2D-structured BNNSs as hybrid boron sources to address the strength-ductility trade-off in TiBw/TC4 (Ti6Al4V) composites. Field-Assisted sintering technique (FAST) in conjunction with hot rolling (HR) was applied to consolidate the composite. The results showed that TC4-based composite exhibited the yield strength of 1339 MPa with fracture elongation of 17.9 % when adding merely 0.1 wt% BNNSs + 0.1 wt% LaB6 reinforcements, achieving simultaneously enhanced strength (+20 %) and ductility (+38 %) compared with TC4 matrix. In particular, the partial reacted BNNSs provided an obviously crack resistance and damage tolerance capability in composite, while the LaB6 effectively reduced the concentration of O impurity via in-situ formed La2O3 nano-particles. By employing the in-situ SEM experiment, we solve an existing debate, uncovering the synergistic toughening effect from BNNSs and heterogeneous interface which effectively inhibited the micro-cracks propagation. Together they made positive function that account for the high-performance in DRTiMCs. This study paved a pragmatic approach and valuable insights for addressing the strength-ductility synergy in DRTiMCs.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.