Tibor Viktor Szalai, Vincenzo di Lorenzo, Nikolett Péczka, Levente M. Mihalovits, László Petri, Qirat F. Ashraf, Elvin D. de Araujo, Viktor Honti, Dávid Bajusz and György M. Keserű*,
{"title":"Allosteric Covalent Inhibitors of the STAT3 Transcription Factor from Virtual Screening","authors":"Tibor Viktor Szalai, Vincenzo di Lorenzo, Nikolett Péczka, Levente M. Mihalovits, László Petri, Qirat F. Ashraf, Elvin D. de Araujo, Viktor Honti, Dávid Bajusz and György M. Keserű*, ","doi":"10.1021/acsmedchemlett.4c0062210.1021/acsmedchemlett.4c00622","DOIUrl":null,"url":null,"abstract":"<p >The STAT family of transcription factors are important signaling hubs, with several of them, particularly STAT3, being emerging oncotargets already investigated in clinical trials. The modular structure of STAT3 nominates several of its protein domains as possible drug targets, but their exploitation with potential small-molecule inhibitors has been unevenly distributed so far, with past efforts highly favoring the conserved SH2 domain. Here, we have targeted a sparsely studied binding site at the junction of the coiled-coil and DNA-binding domains and discovered several new lead-like covalent inhibitors by virtual screening. The most favorable hit compound has been explored via structure-guided hit expansion and optimized into a low micromolar inhibitor. This compound can serve as a chemical biology tool against this site in future exploratory studies or form the basis of a more advanced stage of lead optimization.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 6","pages":"991–997 991–997"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmedchemlett.4c00622","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmedchemlett.4c00622","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The STAT family of transcription factors are important signaling hubs, with several of them, particularly STAT3, being emerging oncotargets already investigated in clinical trials. The modular structure of STAT3 nominates several of its protein domains as possible drug targets, but their exploitation with potential small-molecule inhibitors has been unevenly distributed so far, with past efforts highly favoring the conserved SH2 domain. Here, we have targeted a sparsely studied binding site at the junction of the coiled-coil and DNA-binding domains and discovered several new lead-like covalent inhibitors by virtual screening. The most favorable hit compound has been explored via structure-guided hit expansion and optimized into a low micromolar inhibitor. This compound can serve as a chemical biology tool against this site in future exploratory studies or form the basis of a more advanced stage of lead optimization.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.