Accelerated Discovery of High Entropy Alloys with Breakthrough Hardness via Inverse Design Strategy

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Shumin Cai, Yuyang Qian, Tian Lu, Hang Che, Xiaobo Ji, Wencong Lu, Gang Wang, Wenyan Zhou
{"title":"Accelerated Discovery of High Entropy Alloys with Breakthrough Hardness via Inverse Design Strategy","authors":"Shumin Cai, Yuyang Qian, Tian Lu, Hang Che, Xiaobo Ji, Wencong Lu, Gang Wang, Wenyan Zhou","doi":"10.1016/j.jallcom.2025.181564","DOIUrl":null,"url":null,"abstract":"High entropy alloys (HEAs) have gained substantial attention owing to their excellent properties. Nevertheless, identifying HEAs with high hardness from the extensive compositional space remains a challenging task. In this work, we proposed a machine learning based inverse design strategy combining with a self-developed proactive searching progress method to accelerate the discovery of HEAs with enhanced hardness. Three recommended candidates with predicted high hardness values were synthesized by experiments. The results validated that two of the three designed HEAs Cr<sub>17.7</sub>Fe<sub>20.9</sub>Ni<sub>20.2</sub>Ti<sub>22.2</sub>V<sub>19.0</sub> and Al<sub>31.1</sub>Co<sub>29.8</sub>Cr<sub>2.4</sub>Cu<sub>0.1</sub>Fe<sub>10.8</sub>Ti<sub>17.0</sub>V<sub>8.8</sub> exhibited hardness values exceeding 1000 HV. Notably, Cr<sub>17.7</sub>Fe<sub>20.9</sub>Ni<sub>20.2</sub>Ti<sub>22.2</sub>V<sub>19.0</sub> demonstrated a hardness of 1177 HV, surpassing the maximum hardness in the original dataset. The SHAP analysis reveals that the <em>d</em>-valence electron concentration (<span><math><msup is=\"true\"><mrow is=\"true\"><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">e</mi></mrow><mo is=\"true\">̅</mo></mover></mrow><mrow is=\"true\"><mi is=\"true\">d</mi></mrow></msup></math></span>) is one of the significant factors influencing hardness, and it has a positive impact on hardness when <span><math><msup is=\"true\"><mrow is=\"true\"><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">e</mi></mrow><mo is=\"true\">̅</mo></mover></mrow><mrow is=\"true\"><mi is=\"true\">d</mi></mrow></msup></math></span> is below 5.4. This work proved the feasibility of our strategy in developing new HEAs with breakthrough hardness, which might be instructive to other material fields.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"51 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.181564","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High entropy alloys (HEAs) have gained substantial attention owing to their excellent properties. Nevertheless, identifying HEAs with high hardness from the extensive compositional space remains a challenging task. In this work, we proposed a machine learning based inverse design strategy combining with a self-developed proactive searching progress method to accelerate the discovery of HEAs with enhanced hardness. Three recommended candidates with predicted high hardness values were synthesized by experiments. The results validated that two of the three designed HEAs Cr17.7Fe20.9Ni20.2Ti22.2V19.0 and Al31.1Co29.8Cr2.4Cu0.1Fe10.8Ti17.0V8.8 exhibited hardness values exceeding 1000 HV. Notably, Cr17.7Fe20.9Ni20.2Ti22.2V19.0 demonstrated a hardness of 1177 HV, surpassing the maximum hardness in the original dataset. The SHAP analysis reveals that the d-valence electron concentration (e̅d) is one of the significant factors influencing hardness, and it has a positive impact on hardness when e̅d is below 5.4. This work proved the feasibility of our strategy in developing new HEAs with breakthrough hardness, which might be instructive to other material fields.

Abstract Image

利用逆设计策略加速发现具有突破性硬度的高熵合金
高熵合金(HEAs)因其优异的性能而受到广泛关注。然而,从广泛的成分空间中识别高硬度的HEAs仍然是一项具有挑战性的任务。在这项工作中,我们提出了一种基于机器学习的逆设计策略,并结合自主开发的主动搜索进度方法来加速发现硬度增强的HEAs。通过实验合成了3种具有预测高硬度值的推荐候选材料。结果表明,所设计的三种HEAs中,Cr17.7Fe20.9Ni20.2Ti22.2V19.0和Al31.1Co29.8Cr2.4Cu0.1Fe10.8Ti17.0V8.8的硬度值均超过1000 HV。值得注意的是,Cr17.7Fe20.9Ni20.2Ti22.2V19.0的硬度达到了1177 HV,超过了原始数据集中的最大硬度。SHAP分析表明,d价电子浓度(e′d)是影响硬度的重要因素之一,当e′d < 5.4时,d价电子浓度对硬度有正影响。这一工作证明了我们开发具有突破硬度的新型HEAs策略的可行性,对其他材料领域具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信