Regulating the Hydrolysis of TiCl4 during the Chemical Bath Deposition of TiO2 Electron Transport Layer for High-Performance Carbon-Based CsPbI3 Perovskite Solar Cells

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhe Xing, Gaofeng Li, Qixian Zhang, Jiaxing Liu, Liwei Fan, Huiren Xu, Weiping Li, Huicong Liu, Haining Chen
{"title":"Regulating the Hydrolysis of TiCl4 during the Chemical Bath Deposition of TiO2 Electron Transport Layer for High-Performance Carbon-Based CsPbI3 Perovskite Solar Cells","authors":"Zhe Xing, Gaofeng Li, Qixian Zhang, Jiaxing Liu, Liwei Fan, Huiren Xu, Weiping Li, Huicong Liu, Haining Chen","doi":"10.1002/adfm.202510897","DOIUrl":null,"url":null,"abstract":"TiO<sub>2</sub> is widely utilized as an electron transport layer (ETL) in perovskite solar cells (PSCs) due to its suitable band structure, facile fabrication process, and high-temperature stability. Compared to the other methods, the chemical bath deposition (CBD) method enables the preparation of uniform TiO<sub>2</sub> films under low-temperature conditions. However, during the deposition process, vigorous hydrolysis reactions and reactive intermediates lead to the formation of large agglomerated particles and oxygen vacancies, resulting in poor TiO<sub>2</sub> ETL and low-performance devices. Herein, sulfanilamide (SA) is introduced into the CBD solution to smoothen the hydrolysis reactions of TiCl<sub>4</sub> during the CBD processes. The ─SO<sub>2</sub>NH<sub>2</sub> group of SA molecules renders the hydrolysis process more stable through coordination with titanium ions. The TiO<sub>2</sub> films prepared using this method exhibit lower defect state densities and optimized energy band structures. As a result, the PCE of the carbon-based CsPbI<sub>3</sub> PSCs without a hole transport layer fabricated based on this strategy increases from 17.66% to 19.03%.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"10 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202510897","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

TiO2 is widely utilized as an electron transport layer (ETL) in perovskite solar cells (PSCs) due to its suitable band structure, facile fabrication process, and high-temperature stability. Compared to the other methods, the chemical bath deposition (CBD) method enables the preparation of uniform TiO2 films under low-temperature conditions. However, during the deposition process, vigorous hydrolysis reactions and reactive intermediates lead to the formation of large agglomerated particles and oxygen vacancies, resulting in poor TiO2 ETL and low-performance devices. Herein, sulfanilamide (SA) is introduced into the CBD solution to smoothen the hydrolysis reactions of TiCl4 during the CBD processes. The ─SO2NH2 group of SA molecules renders the hydrolysis process more stable through coordination with titanium ions. The TiO2 films prepared using this method exhibit lower defect state densities and optimized energy band structures. As a result, the PCE of the carbon-based CsPbI3 PSCs without a hole transport layer fabricated based on this strategy increases from 17.66% to 19.03%.

Abstract Image

高性能碳基CsPbI3钙钛矿太阳能电池中TiO2电子传输层化学浴沉积过程中对TiCl4水解的调控
TiO2由于其合适的能带结构、易于制备和高温稳定性,被广泛用作钙钛矿太阳能电池(PSCs)中的电子传输层(ETL)。与其他方法相比,化学浴沉积(CBD)方法可以在低温条件下制备均匀的TiO2薄膜。然而,在沉积过程中,剧烈的水解反应和活性中间体导致形成较大的团聚颗粒和氧空位,导致TiO2 ETL较差,器件性能较低。本文将磺胺(SA)引入到CBD溶液中,以平滑CBD过程中TiCl4的水解反应。SA分子的SO2NH2基团通过与钛离子的配位使水解过程更加稳定。该方法制备的TiO2薄膜具有较低的缺陷态密度和优化的能带结构。结果表明,该策略制备的无空穴传输层碳基CsPbI3 PSCs的PCE从17.66%提高到19.03%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信