Unveiling Strong Electric Fields of Ultrafine Hollow Nanotubes Axially Orienting Asymmetric Polar [Bi5O7] Units for Efficient Piezocatalytic Water Splitting

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-10 DOI:10.1021/acsnano.5c06046
Chunyang Wang, Fang Chen, En Chen, Tong Chen, Tianyi Ma, Hongwei Huang
{"title":"Unveiling Strong Electric Fields of Ultrafine Hollow Nanotubes Axially Orienting Asymmetric Polar [Bi5O7] Units for Efficient Piezocatalytic Water Splitting","authors":"Chunyang Wang, Fang Chen, En Chen, Tong Chen, Tianyi Ma, Hongwei Huang","doi":"10.1021/acsnano.5c06046","DOIUrl":null,"url":null,"abstract":"Exploiting efficient piezocatalytic systems for water splitting is a promising avenue to generate clean energy carriers, though it remains challenging. Here, we develop Bi<sub>5</sub>O<sub>7</sub>Br ultrafine hollow nanotubes (HNTs) with a wall thickness of ∼1 nm as an efficient force-sensitive piezocatalyst for water dissociation. Compared to symmetric [Bi<sub>2</sub>O<sub>2</sub>]-constructed BiOBr, the Bi<sub>5</sub>O<sub>7</sub>Br HNTs built by axially oriented asymmetric polar [Bi<sub>5</sub>O<sub>7</sub>] units demonstrate high chemical bond anisotropy and greater local electrostatic potential difference (ΔU) at all the [−Bi-Br−], [−Bi-O−] and [−Br-Br−] areas, rendering strong piezoelectricity and internal electric field. Bi<sub>5</sub>O<sub>7</sub>Br also furnishes a more favorable active Bi site with easy H* desorption for H<sub>2</sub> evolution due to the upshifted p-band center (ε<sub>p</sub>) of the Bi 6p orbital. Furthermore, mechanical strain amplifies the advantages of asymmetric polar [Bi<sub>5</sub>O<sub>7</sub>] units, allowing Bi<sub>5</sub>O<sub>7</sub>Br to undergo larger structural distortion with substantially increased ΔU. Under strain, a large upward shift of ε<sub>p</sub> of the Bi 6p orbital occurs for Bi<sub>5</sub>O<sub>7</sub>Br, which weakens the interaction between Bi sites and H*, bringing more favorable chemisorption and H* adsorption with a diminished energy barrier, thus resulting in improved H<sub>2</sub> evolution reaction kinetics and thermodynamics. As a result, Bi<sub>5</sub>O<sub>7</sub>Br HNTs deliver an ultrahigh piezocatalytic H<sub>2</sub> production rate of 2456.48 μmol g<sup>–1</sup> h<sup>–1</sup> from pure water in the absence of sacrificial agents, with a mechanical-to-hydrogen efficiency of 0.28%, as well as comparable activity in seawater and tap water. This work proposes a promising tactic for seeking efficient piezocatalysts by designing an ultrafine nanostructure incorporating favorably oriented asymmetric structural units.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"22 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c06046","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Exploiting efficient piezocatalytic systems for water splitting is a promising avenue to generate clean energy carriers, though it remains challenging. Here, we develop Bi5O7Br ultrafine hollow nanotubes (HNTs) with a wall thickness of ∼1 nm as an efficient force-sensitive piezocatalyst for water dissociation. Compared to symmetric [Bi2O2]-constructed BiOBr, the Bi5O7Br HNTs built by axially oriented asymmetric polar [Bi5O7] units demonstrate high chemical bond anisotropy and greater local electrostatic potential difference (ΔU) at all the [−Bi-Br−], [−Bi-O−] and [−Br-Br−] areas, rendering strong piezoelectricity and internal electric field. Bi5O7Br also furnishes a more favorable active Bi site with easy H* desorption for H2 evolution due to the upshifted p-band center (εp) of the Bi 6p orbital. Furthermore, mechanical strain amplifies the advantages of asymmetric polar [Bi5O7] units, allowing Bi5O7Br to undergo larger structural distortion with substantially increased ΔU. Under strain, a large upward shift of εp of the Bi 6p orbital occurs for Bi5O7Br, which weakens the interaction between Bi sites and H*, bringing more favorable chemisorption and H* adsorption with a diminished energy barrier, thus resulting in improved H2 evolution reaction kinetics and thermodynamics. As a result, Bi5O7Br HNTs deliver an ultrahigh piezocatalytic H2 production rate of 2456.48 μmol g–1 h–1 from pure water in the absence of sacrificial agents, with a mechanical-to-hydrogen efficiency of 0.28%, as well as comparable activity in seawater and tap water. This work proposes a promising tactic for seeking efficient piezocatalysts by designing an ultrafine nanostructure incorporating favorably oriented asymmetric structural units.

Abstract Image

超细空心纳米管轴向定向不对称极性[Bi5O7]单元的强电场揭示用于高效压电催化水分解
利用高效的压电催化系统进行水分解是产生清洁能源载体的一个很有前途的途径,尽管它仍然具有挑战性。在这里,我们开发了Bi5O7Br超细空心纳米管(HNTs),其壁厚约为1 nm,作为水解离的有效力敏感压电催化剂。与对称的[Bi2O2]构建的Bi5O7Br HNTs相比,轴向不对称极性[Bi5O7]单元构建的Bi5O7Br HNTs在[−Bi-Br−]、[−Bi-O−]和[−Br-Br−]区域均表现出较高的化学键各向异性和更大的局部静电电位差(ΔU),呈现出强的压电性和内部电场。由于bi6p轨道的p带中心(εp)的上移,Bi5O7Br也提供了一个更有利的活性Bi位,易于H*解吸,有利于H2的演化。此外,机械应变放大了不对称极性[Bi5O7]单元的优势,允许Bi5O7Br经历更大的结构畸变,大大增加ΔU。应变作用下,Bi5O7Br的bi6p轨道εp大幅上移,减弱了Bi位与H*之间的相互作用,使其更有利于化学吸附和H*吸附,能垒降低,从而改善了析氢反应动力学和热力学。结果表明,在不添加牺牲剂的情况下,Bi5O7Br HNTs在纯水中具有2456.48 μmol g-1 h-1的超高压催化制氢速率,机械制氢效率为0.28%,在海水和自来水中的活性相当。这项工作提出了一个有前途的策略,寻求高效的压电催化剂,通过设计一个超细纳米结构包含有利定向的不对称结构单元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信