Design of CO2-philic molecular units with large language models†

IF 4.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Konstantinos D. Vogiatzis
{"title":"Design of CO2-philic molecular units with large language models†","authors":"Konstantinos D. Vogiatzis","doi":"10.1039/d5cc02652k","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of large language models (LLMs) into chemical sciences presents a transformative approach for molecular design. In this study, we explore the capabilities of LLMs for generating novel molecular structures with enhanced CO<sub>2</sub> affinity for the development of novel physisorption-based carbon capture technologies. By integrating LLM-generated candidates with DFT-based evaluation, we identified promising physisorption agents and highlighted the synergy between AI and expert-guided chemical research. Notably, LLM-generated structures showcased emergent design strategies, such as cooperative binding motifs, that aligned with domain knowledge and experimental precedent.</div></div>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":"61 55","pages":"Pages 10166-10169"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1359734525012224","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of large language models (LLMs) into chemical sciences presents a transformative approach for molecular design. In this study, we explore the capabilities of LLMs for generating novel molecular structures with enhanced CO2 affinity for the development of novel physisorption-based carbon capture technologies. By integrating LLM-generated candidates with DFT-based evaluation, we identified promising physisorption agents and highlighted the synergy between AI and expert-guided chemical research. Notably, LLM-generated structures showcased emergent design strategies, such as cooperative binding motifs, that aligned with domain knowledge and experimental precedent.

Abstract Image

Abstract Image

基于大语言模型的亲二氧化碳分子单元设计
将大型语言模型(LLMs)整合到化学科学中,为分子设计提供了一种变革性的方法。在本研究中,我们探索了llm生成具有增强CO2亲和力的新型分子结构的能力,以开发新的基于物理吸附的碳捕获技术。通过将法学硕士生成的候选材料与基于dft的评估相结合,我们确定了有前途的物理吸附剂,并强调了人工智能与专家指导的化学研究之间的协同作用。值得注意的是,法学硕士生成的结构展示了紧急设计策略,例如与领域知识和实验先例相一致的合作绑定基序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Communications
Chemical Communications 化学-化学综合
CiteScore
8.60
自引率
4.10%
发文量
2705
审稿时长
1.4 months
期刊介绍: ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信