Phage display enables machine learning discovery of cancer antigen–specific TCRs

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Giancarlo Croce, Rachid Lani, Delphine Tardivon, Sara Bobisse, Mariastella de Tiani, Maiia Bragina, Marta A. S. Perez, Justine Michaux, Hui Song Pak, Alexandra Michel, Talita Gehret, Julien Schmidt, Philippe Guillame, Michal Bassani-Sternberg, Vincent Zoete, Alexandre Harari, Nathalie Rufer, Michael Hebeisen, Steven M. Dunn, David Gfeller
{"title":"Phage display enables machine learning discovery of cancer antigen–specific TCRs","authors":"Giancarlo Croce,&nbsp;Rachid Lani,&nbsp;Delphine Tardivon,&nbsp;Sara Bobisse,&nbsp;Mariastella de Tiani,&nbsp;Maiia Bragina,&nbsp;Marta A. S. Perez,&nbsp;Justine Michaux,&nbsp;Hui Song Pak,&nbsp;Alexandra Michel,&nbsp;Talita Gehret,&nbsp;Julien Schmidt,&nbsp;Philippe Guillame,&nbsp;Michal Bassani-Sternberg,&nbsp;Vincent Zoete,&nbsp;Alexandre Harari,&nbsp;Nathalie Rufer,&nbsp;Michael Hebeisen,&nbsp;Steven M. Dunn,&nbsp;David Gfeller","doi":"10.1126/sciadv.ads5589","DOIUrl":null,"url":null,"abstract":"<div >T cells targeting epitopes in infectious diseases or cancer play a central role in spontaneous and therapy-induced immune responses. Epitope recognition is mediated by the binding of the T cell receptor (TCR), and TCRs recognizing clinically relevant epitopes are promising for T cell–based therapies. Starting from a TCR targeting the cancer-testis antigen NY-ESO-1<sub>157–165</sub> epitope, we built large phage display libraries of TCRs with randomized complementary determining region 3 of the β chain. The TCR libraries were panned against NY-ESO-1, which enabled us to collect thousands of epitope-specific TCR sequences. Leveraging these data, we trained a machine learning TCR-epitope interaction predictor and identified several epitope-specific TCRs from TCR repertoires. Cellular assays revealed that the predicted TCRs displayed activity toward NY-ESO-1 and no detectable cross-reactivity. Our work demonstrates how display technologies combined with TCR-epitope interaction predictors can effectively leverage large TCR repertoires for TCR discovery.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 24","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads5589","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads5589","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

T cells targeting epitopes in infectious diseases or cancer play a central role in spontaneous and therapy-induced immune responses. Epitope recognition is mediated by the binding of the T cell receptor (TCR), and TCRs recognizing clinically relevant epitopes are promising for T cell–based therapies. Starting from a TCR targeting the cancer-testis antigen NY-ESO-1157–165 epitope, we built large phage display libraries of TCRs with randomized complementary determining region 3 of the β chain. The TCR libraries were panned against NY-ESO-1, which enabled us to collect thousands of epitope-specific TCR sequences. Leveraging these data, we trained a machine learning TCR-epitope interaction predictor and identified several epitope-specific TCRs from TCR repertoires. Cellular assays revealed that the predicted TCRs displayed activity toward NY-ESO-1 and no detectable cross-reactivity. Our work demonstrates how display technologies combined with TCR-epitope interaction predictors can effectively leverage large TCR repertoires for TCR discovery.

Abstract Image

噬菌体展示使机器学习发现癌症抗原特异性tcr
靶向感染性疾病或癌症表位的T细胞在自发和治疗诱导的免疫反应中发挥核心作用。表位识别是由T细胞受体(TCR)结合介导的,TCR识别临床相关的表位在基于T细胞的治疗中是有希望的。我们从靶向癌睾丸抗原NY-ESO-1 157-165表位的TCR开始,构建了β链随机互补区3的TCR噬菌体展示文库。将TCR文库与NY-ESO-1进行比对,收集到数千个表位特异性TCR序列。利用这些数据,我们训练了一个机器学习TCR-表位相互作用预测器,并从TCR谱中识别了几个表位特异性TCR。细胞分析显示,预测的TCRs对NY-ESO-1具有活性,没有可检测到的交叉反应性。我们的工作证明了显示技术与TCR-表位相互作用预测因子的结合如何有效地利用大量的TCR库来发现TCR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信