Conformational Engineering of Solvent Molecules for High-Voltage and Fast-Charging Lithium Metal Batteries

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Borui Yang, Yuankun Wang, Ruixin Zheng, Wei Yang, Yuanjian Li, Ting Li, Kun Li, Anjun Hu, Prof. Jianping Long, Prof. Shujiang Ding
{"title":"Conformational Engineering of Solvent Molecules for High-Voltage and Fast-Charging Lithium Metal Batteries","authors":"Borui Yang,&nbsp;Yuankun Wang,&nbsp;Ruixin Zheng,&nbsp;Wei Yang,&nbsp;Yuanjian Li,&nbsp;Ting Li,&nbsp;Kun Li,&nbsp;Anjun Hu,&nbsp;Prof. Jianping Long,&nbsp;Prof. Shujiang Ding","doi":"10.1002/anie.202508486","DOIUrl":null,"url":null,"abstract":"<p>High-voltage and fast-charging lithium metal batteries (LMBs) are crucial for overcoming electric vehicle range and charging limitations. However, conventional carbonate electrolytes face intrinsic limitations in simultaneously achieving compatibility with high-voltage cathodes and lithium metal anodes. These limitations arise from sluggish Li<sup>+</sup> transport kinetics and parasitic side reactions, both largely driven by excessive Li<sup>+</sup> solvation energy inherent to carbonates. To address these challenges, we propose a conformational engineering strategy of fluorinated solvent molecules by developing a 2,2,3,3,4,4-hexafluoropentanedioic·anhydride (HFPA)-derived electrolyte (HFPE). The chair conformation of HFPA synergizes with its high F/C ratio to establish a low-polarity solvation environment, effectively reducing desolvation energy barriers. In addition, the HFPA-induced ligand preference for anion aggregation contributes to the formation of anion-rich dissolved sheaths while stabilizing the electrode–electrolyte interphases. The engineered HFPE demonstrates accelerated interfacial ion transport kinetics with an enhanced Li<sup>+</sup> transference number of 0.64. When paired with LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathodes under stringent operating conditions (4.5 V cut-off voltage, 10 C-rate), HFPE-enabled cells exhibit exceptional cycling stability. Notably, industrial-scale 5.6 Ah lithium metal pouch cells employing HFPE maintain stable operation at 4.5 V, underscoring the practical viability of this conformation modulation approach. This work establishes a paradigm-shifting strategy for next-generation electrolyte design in practical high-energy-density LMBs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 33","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202508486","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-voltage and fast-charging lithium metal batteries (LMBs) are crucial for overcoming electric vehicle range and charging limitations. However, conventional carbonate electrolytes face intrinsic limitations in simultaneously achieving compatibility with high-voltage cathodes and lithium metal anodes. These limitations arise from sluggish Li+ transport kinetics and parasitic side reactions, both largely driven by excessive Li+ solvation energy inherent to carbonates. To address these challenges, we propose a conformational engineering strategy of fluorinated solvent molecules by developing a 2,2,3,3,4,4-hexafluoropentanedioic·anhydride (HFPA)-derived electrolyte (HFPE). The chair conformation of HFPA synergizes with its high F/C ratio to establish a low-polarity solvation environment, effectively reducing desolvation energy barriers. In addition, the HFPA-induced ligand preference for anion aggregation contributes to the formation of anion-rich dissolved sheaths while stabilizing the electrode–electrolyte interphases. The engineered HFPE demonstrates accelerated interfacial ion transport kinetics with an enhanced Li+ transference number of 0.64. When paired with LiNi0.8Co0.1Mn0.1O2 cathodes under stringent operating conditions (4.5 V cut-off voltage, 10 C-rate), HFPE-enabled cells exhibit exceptional cycling stability. Notably, industrial-scale 5.6 Ah lithium metal pouch cells employing HFPE maintain stable operation at 4.5 V, underscoring the practical viability of this conformation modulation approach. This work establishes a paradigm-shifting strategy for next-generation electrolyte design in practical high-energy-density LMBs.

Abstract Image

高压快充锂金属电池溶剂分子构象工程
高压和快速充电的锂金属电池(lmb)是克服电动汽车续航里程和充电限制的关键。然而,传统的碳酸盐电解质在同时实现高压和锂金属阳极的相容性方面存在固有的局限性。这些限制来自缓慢的Li+传输动力学和寄生副反应,这两种反应主要是由碳酸盐固有的过量Li+溶剂化能驱动的。为了解决这些挑战,我们提出了一种氟化溶剂分子构象工程策略,即开发2,2,3,3,4,4-六氟戊二酸·酸酐(HFPA)衍生电解质(HFPE)。HFPA的椅子构象与其高F/C比协同作用,建立了低极性的溶剂化环境,有效降低了脱溶能垒。此外,hfpa诱导的配体对阴离子聚集的偏好有助于形成富含阴离子的溶解鞘,同时稳定电极-电解质界面。工程制备的HFPE显示出加速的界面离子传输动力学,Li+转移数提高了0.64。当与LiNi0.8Co0.1Mn0.1O2阴极配对时,在严格的工作条件下(4.5 V截止电压,10 C-rate), hfpe使能电池表现出优异的循环稳定性。值得注意的是,采用HFPE的工业规模5.6 Ah锂金属袋状电池在4.5 V下保持稳定运行,强调了这种构象调制方法的实际可行性。这项工作为实际高能量密度lmb的下一代电解质设计建立了一种范式转换策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信