Heterojunction configuration-specific photocatalytic degradation of methyl orange and methylene blue dyes using ZnO-based nanocomposites

IF 13 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mengjiao Wu, Chengpu Lv, Yuling Xiong, Wenglong Li, Yuangui Lin, Jing Li, Fei Yu, Huan Yuan, Biao You, Qiuping Zhang, Ming Xu
{"title":"Heterojunction configuration-specific photocatalytic degradation of methyl orange and methylene blue dyes using ZnO-based nanocomposites","authors":"Mengjiao Wu, Chengpu Lv, Yuling Xiong, Wenglong Li, Yuangui Lin, Jing Li, Fei Yu, Huan Yuan, Biao You, Qiuping Zhang, Ming Xu","doi":"10.1016/j.jare.2025.06.027","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Heterostructured photocatalysts have shown an enormous potential in photocatalytic degradation of organic pollutants in wastewater. However, the efficacy of such heterojunction on the photocatalytic degradation behaviors has not yet been fully revealed.<h3>Objectives</h3>This work aims to demonstrate a specific photocatalytic degradation behavior of ZnO-based heterostructured nanocomposites toward methyl orange (MO) and methylene blue (MB) dyes based on a systematically comparative investigation for their physical and chemical properties.<h3>Methods</h3>A series of low-cost and efficient ZnO-based heterostructured nanocomposite photocatalysts including ZnO/CuO, ZnO/TiO<sub>2</sub> and ZnO/SnO<sub>2</sub> with 3 and 10 mol% of CuO/TiO<sub>2</sub>/SnO<sub>2</sub> were synthesized by a simple strategy to combine the modified polymer-network gel and traditional sol–gel methods. The physical and chemical properties were analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), ultraviolet–visible (UV–Vis) absorption spectra, photoluminescence (PL), surface photovoltage (SPV), electrochemical impedance spectroscopy (EIS) and zeta potential.<h3>Results</h3>Owing to the fast interfacial charge transfer at the heterojunction, all the three ZnO-based nanocomposite catalysts exhibited higher efficient separation of photogenerated electrons and holes, delivering an enhanced photocatalytic activity for the degradation of organic dyes compared with pure ZnO. Three photocatalysts of ZnO/3 %-CuO, ZnO/3 %-TiO<sub>2</sub> and ZnO/10 %-SnO<sub>2</sub> (marking as ZC3, ZT3 and ZS10, respectively) were capable of achieving the complete degradation of 4 mg/L concentration of MB dye within 50 min, and the first two could degrade MO within 80 min. However, the degradation rate of MO by ZS10 became significantly slower. For MO and MB degradation, the active species of photogenerated holes (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mtext is=\"true\"&gt;h&lt;/mtext&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;h&lt;/mi&gt;&lt;mi is=\"true\"&gt;&amp;#x3BD;&lt;/mi&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;+&lt;/mo&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -896.2 1439.3 1295.7\" width=\"3.343ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-68\"></use></g><g is=\"true\" transform=\"translate(556,422)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g><g is=\"true\" transform=\"translate(556,-308)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-68\"></use></g><g is=\"true\" transform=\"translate(407,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-3BD\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mtext is=\"true\">h</mtext><mrow is=\"true\"><mi is=\"true\">h</mi><mi is=\"true\">ν</mi></mrow><mo is=\"true\">+</mo></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mtext is=\"true\">h</mtext><mrow is=\"true\"><mi is=\"true\">h</mi><mi is=\"true\">ν</mi></mrow><mo is=\"true\">+</mo></msubsup></math></script></span>) and superoxide radicals (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#xB7;&lt;/mo&gt;&lt;msubsup is=\"true\"&gt;&lt;mtext is=\"true\"&gt;O&lt;/mtext&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;mo is=\"true\"&gt;-&lt;/mo&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -945.9 1707.5 1295.7\" width=\"3.966ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-22C5\"></use></g><g is=\"true\" transform=\"translate(278,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g><g is=\"true\" transform=\"translate(778,432)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(778,-278)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">·</mo><msubsup is=\"true\"><mtext is=\"true\">O</mtext><mn is=\"true\">2</mn><mo is=\"true\">-</mo></msubsup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">·</mo><msubsup is=\"true\"><mtext is=\"true\">O</mtext><mn is=\"true\">2</mn><mo is=\"true\">-</mo></msubsup></mrow></math></script></span>) play the predominant roles, respectively, followed by hydroxyl radicals (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#xB7;&lt;/mo&gt;&lt;mtext is=\"true\"&gt;OH&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -796.9 1807.5 898.2\" width=\"4.198ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-22C5\"></use></g><g is=\"true\" transform=\"translate(278,0)\"><use xlink:href=\"#MJMAIN-4F\"></use><use x=\"778\" xlink:href=\"#MJMAIN-48\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">·</mo><mtext is=\"true\">OH</mtext></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">·</mo><mtext is=\"true\">OH</mtext></mrow></math></script></span>). The differences in heterojunction configuration and dominant active species result in a specific photocatalytic degradation behavior of ZnO-based composite nanostructures.<h3>Conclusion</h3>The generation of the active species are influenced by the heterojunction configurations, of which the essence is that the different band alignments can results in the differences of interfacial charge transfer behaviors, and thus selective generation of the active species such as <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mtext is=\"true\"&gt;h&lt;/mtext&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;h&lt;/mi&gt;&lt;mi is=\"true\"&gt;&amp;#x3BD;&lt;/mi&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;+&lt;/mo&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -896.2 1439.3 1295.7\" width=\"3.343ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-68\"></use></g><g is=\"true\" transform=\"translate(556,422)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g><g is=\"true\" transform=\"translate(556,-308)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-68\"></use></g><g is=\"true\" transform=\"translate(407,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-3BD\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mtext is=\"true\">h</mtext><mrow is=\"true\"><mi is=\"true\">h</mi><mi is=\"true\">ν</mi></mrow><mo is=\"true\">+</mo></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mtext is=\"true\">h</mtext><mrow is=\"true\"><mi is=\"true\">h</mi><mi is=\"true\">ν</mi></mrow><mo is=\"true\">+</mo></msubsup></math></script></span>, <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#xB7;&lt;/mo&gt;&lt;msubsup is=\"true\"&gt;&lt;mtext is=\"true\"&gt;O&lt;/mtext&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;mo is=\"true\"&gt;-&lt;/mo&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -945.9 1707.5 1295.7\" width=\"3.966ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-22C5\"></use></g><g is=\"true\" transform=\"translate(278,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g><g is=\"true\" transform=\"translate(778,432)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(778,-278)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">·</mo><msubsup is=\"true\"><mtext is=\"true\">O</mtext><mn is=\"true\">2</mn><mo is=\"true\">-</mo></msubsup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">·</mo><msubsup is=\"true\"><mtext is=\"true\">O</mtext><mn is=\"true\">2</mn><mo is=\"true\">-</mo></msubsup></mrow></math></script></span> and <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#xB7;&lt;/mo&gt;&lt;mtext is=\"true\"&gt;OH&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -796.9 1807.5 898.2\" width=\"4.198ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-22C5\"></use></g><g is=\"true\" transform=\"translate(278,0)\"><use xlink:href=\"#MJMAIN-4F\"></use><use x=\"778\" xlink:href=\"#MJMAIN-48\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">·</mo><mtext is=\"true\">OH</mtext></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">·</mo><mtext is=\"true\">OH</mtext></mrow></math></script></span>. Importantly, this work offers a fundamental understanding for specific photocatalytic degradation of the different heterojunction nanostructures towards the different organic dyes.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"92 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.06.027","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Heterostructured photocatalysts have shown an enormous potential in photocatalytic degradation of organic pollutants in wastewater. However, the efficacy of such heterojunction on the photocatalytic degradation behaviors has not yet been fully revealed.

Objectives

This work aims to demonstrate a specific photocatalytic degradation behavior of ZnO-based heterostructured nanocomposites toward methyl orange (MO) and methylene blue (MB) dyes based on a systematically comparative investigation for their physical and chemical properties.

Methods

A series of low-cost and efficient ZnO-based heterostructured nanocomposite photocatalysts including ZnO/CuO, ZnO/TiO2 and ZnO/SnO2 with 3 and 10 mol% of CuO/TiO2/SnO2 were synthesized by a simple strategy to combine the modified polymer-network gel and traditional sol–gel methods. The physical and chemical properties were analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), ultraviolet–visible (UV–Vis) absorption spectra, photoluminescence (PL), surface photovoltage (SPV), electrochemical impedance spectroscopy (EIS) and zeta potential.

Results

Owing to the fast interfacial charge transfer at the heterojunction, all the three ZnO-based nanocomposite catalysts exhibited higher efficient separation of photogenerated electrons and holes, delivering an enhanced photocatalytic activity for the degradation of organic dyes compared with pure ZnO. Three photocatalysts of ZnO/3 %-CuO, ZnO/3 %-TiO2 and ZnO/10 %-SnO2 (marking as ZC3, ZT3 and ZS10, respectively) were capable of achieving the complete degradation of 4 mg/L concentration of MB dye within 50 min, and the first two could degrade MO within 80 min. However, the degradation rate of MO by ZS10 became significantly slower. For MO and MB degradation, the active species of photogenerated holes (hhν+) and superoxide radicals (·O2-) play the predominant roles, respectively, followed by hydroxyl radicals (·OH). The differences in heterojunction configuration and dominant active species result in a specific photocatalytic degradation behavior of ZnO-based composite nanostructures.

Conclusion

The generation of the active species are influenced by the heterojunction configurations, of which the essence is that the different band alignments can results in the differences of interfacial charge transfer behaviors, and thus selective generation of the active species such as hhν+, ·O2- and ·OH. Importantly, this work offers a fundamental understanding for specific photocatalytic degradation of the different heterojunction nanostructures towards the different organic dyes.

Abstract Image

zno基纳米复合材料对甲基橙和亚甲基蓝染料异质结构型特异性光催化降解研究
异质结构光催化剂在光催化降解废水中有机污染物方面显示出巨大的潜力。然而,这种异质结对光催化降解行为的影响尚未完全揭示。目的通过系统比较zno基异质结构纳米复合材料对甲基橙(MO)和亚甲基蓝(MB)染料的物理和化学性质,研究其光催化降解性能。方法采用改性聚合物网络凝胶与传统溶胶-凝胶相结合的方法,合成了CuO/TiO2/SnO2含量分别为3和10 摩尔%的ZnO/CuO、ZnO/TiO2和ZnO/SnO2等一系列低成本、高效的ZnO基异质结构纳米复合光催化剂。采用x射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、x射线光电子能谱(XPS)、紫外-可见(UV-Vis)吸收光谱、光致发光(PL)、表面光电压(SPV)、电化学阻抗谱(EIS)和zeta电位分析了材料的理化性质。结果由于异质结界面电荷的快速转移,三种ZnO基纳米复合催化剂均表现出更高的光生电子与空穴的分离效率,对有机染料的降解具有比纯ZnO更高的光催化活性。ZnO/3 %-CuO、ZnO/3 %-TiO2和ZnO/10 %-SnO2三种光催化剂(分别标记为ZC3、ZT3和ZS10)能在50 min内完全降解4 mg/L浓度的MB染料,前两种光催化剂能在80 min内完全降解MO。而ZS10对MO的降解速率明显变慢。对于MO和MB的降解,光生空穴活性物质(hhν+hhν+)和超氧自由基(·O2-·O2-)分别起主导作用,其次是羟基自由基(·OH·OH)。异质结结构和优势活性物质的差异导致zno基复合纳米结构具有特定的光催化降解行为。结论异质结构型对活性物质的生成有影响,其实质是不同的能带排列会导致界面电荷转移行为的差异,从而导致hhν+hhν+、·O2-·O2-和·OH·OH等活性物质的选择性生成。重要的是,这项工作为不同异质结纳米结构对不同有机染料的特定光催化降解提供了基本的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信