The class imbalance problem in automatic localization of the epileptogenic zone for epilepsy surgery: a systematic review.

IF 3.8
Valentina Hrtonova, Kassem Jaber, Petr Nejedly, Elizabeth R Blackwood, Petr Klimes, Birgit Frauscher
{"title":"The class imbalance problem in automatic localization of the epileptogenic zone for epilepsy surgery: a systematic review.","authors":"Valentina Hrtonova, Kassem Jaber, Petr Nejedly, Elizabeth R Blackwood, Petr Klimes, Birgit Frauscher","doi":"10.1088/1741-2552/ade28c","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Accurate localization of the epileptogenic zone (EZ) is crucial for epilepsy surgery, but the class imbalance of epileptogenic vs. non-epileptogenic electrode contacts in intracranial electroencephalography (iEEG) data poses significant challenges for automatic localization methods. This review evaluates methodologies for handling the class imbalance in EZ localization studies that use machine learning (ML).<i>Approach.</i>We systematically reviewed studies employing ML to localize the EZ from iEEG data, focusing on strategies for addressing class imbalance in data handling, algorithm design, and evaluation.<i>Results.</i>Out of 2,128 screened studies, 35 fulfilled the inclusion criteria. Across the studies, the iEEG contacts annotated as epileptogenic prior to automatic localization constituted a median of 18.34% of all contacts. However, many of these studies did not adequately address the class imbalance problem. Techniques such as data resampling and cost-sensitive learning were used to mitigate the class imbalance problem, but the chosen evaluation metrics often failed to account for it.<i>Significance.</i>Class imbalance significantly impacts the reliability of EZ localization models. More comprehensive management and innovative approaches are needed to enhance the robustness and clinical utility of these models. Addressing class imbalance in ML models for EZ localization will improve both the predictive performance and reliability of these models.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ade28c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Accurate localization of the epileptogenic zone (EZ) is crucial for epilepsy surgery, but the class imbalance of epileptogenic vs. non-epileptogenic electrode contacts in intracranial electroencephalography (iEEG) data poses significant challenges for automatic localization methods. This review evaluates methodologies for handling the class imbalance in EZ localization studies that use machine learning (ML).Approach.We systematically reviewed studies employing ML to localize the EZ from iEEG data, focusing on strategies for addressing class imbalance in data handling, algorithm design, and evaluation.Results.Out of 2,128 screened studies, 35 fulfilled the inclusion criteria. Across the studies, the iEEG contacts annotated as epileptogenic prior to automatic localization constituted a median of 18.34% of all contacts. However, many of these studies did not adequately address the class imbalance problem. Techniques such as data resampling and cost-sensitive learning were used to mitigate the class imbalance problem, but the chosen evaluation metrics often failed to account for it.Significance.Class imbalance significantly impacts the reliability of EZ localization models. More comprehensive management and innovative approaches are needed to enhance the robustness and clinical utility of these models. Addressing class imbalance in ML models for EZ localization will improve both the predictive performance and reliability of these models.

癫痫手术致痫区自动定位中的类不平衡问题:系统综述。
目的:癫痫区(EZ)的准确定位对癫痫手术至关重要,但颅内脑电图(iEEG)数据中癫痫区与正常电极接触的类别不平衡给自动定位方法带来了重大挑战。这篇综述评估了在使用机器学习的EZ定位研究中处理阶级不平衡的方法。方法:我们系统地回顾了利用机器学习从iEEG数据中定位EZ的研究,重点关注在数据处理、算法设计和评估中解决类别不平衡的策略。结果:在筛选的2128项研究中,35项符合纳入标准。在所有研究中,通过定位算法确定为癫痫性的iEEG接触者占所有接触者的中位数为18.34%。然而,这些研究中的许多都没有充分解决阶级不平衡问题。数据重采样和成本敏感学习等技术被用来缓解类不平衡问题,但所选择的评估指标往往无法解释这一问题。意义:类不平衡显著影响EZ定位模型的可靠性。需要更全面的管理和创新的方法来提高这些模型的稳健性和临床实用性。解决EZ定位机器学习模型中的类不平衡问题将提高这些模型的预测性能和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信