Norie Kagawa, Yoshihiko Umesono, Ken-ichi T. Suzuki, Makoto Mochii
{"title":"Step-by-Step Protocol for Making a Knock-In Xenopus laevis to Visualize Endogenous Gene Expression","authors":"Norie Kagawa, Yoshihiko Umesono, Ken-ichi T. Suzuki, Makoto Mochii","doi":"10.1111/dgd.70011","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We established a novel knock-in technique, New and Easy <i>Xenopus</i> Targeted integration (<i>NEXTi</i>), to recapitulate endogenous gene expression by reporter expression. <i>NEXTi</i> is a CRISPR-Cas9-based method to integrate a donor DNA containing a reporter gene (<i>egfp</i>) into the target 5′ untranslated region (UTR) of the <i>Xenopus laevis</i> genome. It enables us to track eGFP expression under the regulation of endogenous promoter/enhancer activities. We obtained about 2% to 13% of knock-in vector-injected embryos showing eGFP signal in a tissue-specific manner, targeting <i>krt.12.2.L</i>, <i>myod1.S</i>, <i>sox2.L</i>, and <i>bcan</i>.<i>S</i> loci, as previously reported. In addition, F1 embryos which show stable eGFP signals were obtained by outcrossing the matured injected frogs with wild-type animals. Integrations of donor DNAs into target 5′ UTRs were confirmed by PCR amplification and sequencing. Here, we describe the step-by-step protocol for preparation of donor DNA and single guide RNA, microinjection, and genotyping of F1 animals for the <i>NEXTi</i> procedure.</p>\n </div>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"67 5","pages":"293-302"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Growth & Differentiation","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/dgd.70011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We established a novel knock-in technique, New and Easy Xenopus Targeted integration (NEXTi), to recapitulate endogenous gene expression by reporter expression. NEXTi is a CRISPR-Cas9-based method to integrate a donor DNA containing a reporter gene (egfp) into the target 5′ untranslated region (UTR) of the Xenopus laevis genome. It enables us to track eGFP expression under the regulation of endogenous promoter/enhancer activities. We obtained about 2% to 13% of knock-in vector-injected embryos showing eGFP signal in a tissue-specific manner, targeting krt.12.2.L, myod1.S, sox2.L, and bcan.S loci, as previously reported. In addition, F1 embryos which show stable eGFP signals were obtained by outcrossing the matured injected frogs with wild-type animals. Integrations of donor DNAs into target 5′ UTRs were confirmed by PCR amplification and sequencing. Here, we describe the step-by-step protocol for preparation of donor DNA and single guide RNA, microinjection, and genotyping of F1 animals for the NEXTi procedure.
期刊介绍:
Development Growth & Differentiation (DGD) publishes three types of articles: original, resource, and review papers.
Original papers are on any subjects having a context in development, growth, and differentiation processes in animals, plants, and microorganisms, dealing with molecular, genetic, cellular and organismal phenomena including metamorphosis and regeneration, while using experimental, theoretical, and bioinformatic approaches. Papers on other related fields are also welcome, such as stem cell biology, genomics, neuroscience, Evodevo, Ecodevo, and medical science as well as related methodology (new or revised techniques) and bioresources.
Resource papers describe a dataset, such as whole genome sequences and expressed sequence tags (ESTs), with some biological insights, which should be valuable for studying the subjects as mentioned above.
Submission of review papers is also encouraged, especially those providing a new scope based on the authors’ own study, or a summarization of their study series.