Environmental data provide marginal benefit for predicting climate adaptation.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2025-06-09 eCollection Date: 2025-06-01 DOI:10.1371/journal.pgen.1011714
Forrest Li, Daniel J Gates, Edward S Buckler, Matthew B Hufford, Garrett M Janzen, Rubén Rellán-Álvarez, Fausto Rodríguez-Zapata, J Alberto Romero Navarro, Ruairidh J H Sawers, Samantha J Snodgrass, Kai Sonder, Martha C Willcox, Sarah J Hearne, Jeffrey Ross-Ibarra, Daniel E Runcie
{"title":"Environmental data provide marginal benefit for predicting climate adaptation.","authors":"Forrest Li, Daniel J Gates, Edward S Buckler, Matthew B Hufford, Garrett M Janzen, Rubén Rellán-Álvarez, Fausto Rodríguez-Zapata, J Alberto Romero Navarro, Ruairidh J H Sawers, Samantha J Snodgrass, Kai Sonder, Martha C Willcox, Sarah J Hearne, Jeffrey Ross-Ibarra, Daniel E Runcie","doi":"10.1371/journal.pgen.1011714","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change poses a major challenge for both natural and cultivated species. Genomic tools are increasingly used in both conservation and breeding to identify adaptive loci that can be used to guide management in future climates. Here, we study the utility of climate and genomic data for identifying promising alleles using common gardens of a large, geographically diverse sample of traditional maize varieties to evaluate multiple approaches. First, we used genotype data to predict environmental characteristics of germplasm collections to identify varieties that may be pre-adapted to target environments. Second, we used environmental GWAS (envGWAS) to identify loci associated with historical divergence along climatic gradients. Finally, we compared the value of environmental data and envGWAS-prioritized loci to genomic data for prioritizing traditional varieties. We find that maize yield traits are best predicted by genome-wide relatedness and population structure, and that incorporating envGWAS-identified variants or environment-of-origin data provide little additional predictive information. While our results suggest that environmental data provide limited benefit in predicting fitness-related phenotypes, environmental GWAS is nonetheless a potentially powerful approach to identify individual novel loci associated with adaptation, especially when coupled with high density genotyping.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 6","pages":"e1011714"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011714","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change poses a major challenge for both natural and cultivated species. Genomic tools are increasingly used in both conservation and breeding to identify adaptive loci that can be used to guide management in future climates. Here, we study the utility of climate and genomic data for identifying promising alleles using common gardens of a large, geographically diverse sample of traditional maize varieties to evaluate multiple approaches. First, we used genotype data to predict environmental characteristics of germplasm collections to identify varieties that may be pre-adapted to target environments. Second, we used environmental GWAS (envGWAS) to identify loci associated with historical divergence along climatic gradients. Finally, we compared the value of environmental data and envGWAS-prioritized loci to genomic data for prioritizing traditional varieties. We find that maize yield traits are best predicted by genome-wide relatedness and population structure, and that incorporating envGWAS-identified variants or environment-of-origin data provide little additional predictive information. While our results suggest that environmental data provide limited benefit in predicting fitness-related phenotypes, environmental GWAS is nonetheless a potentially powerful approach to identify individual novel loci associated with adaptation, especially when coupled with high density genotyping.

环境数据为预测气候适应提供了边际效益。
气候变化对自然和栽培物种都构成了重大挑战。基因组工具越来越多地用于保护和育种,以确定可用于指导未来气候管理的适应性位点。在这里,我们研究了气候和基因组数据在识别有希望的等位基因方面的效用,利用一个大的、地理上不同的传统玉米品种样本的共同花园来评估多种方法。首先,我们使用基因型数据来预测种质资源收集的环境特征,以确定可能预先适应目标环境的品种。其次,我们使用环境GWAS (envGWAS)来识别与气候梯度相关的历史差异位点。最后,我们比较了环境数据和envgwas优先位点与基因组数据对传统品种优先排序的价值。我们发现玉米产量性状最好通过全基因组相关性和群体结构来预测,而结合envgwas鉴定的变异或原始环境提供的额外预测信息很少。虽然我们的研究结果表明,环境数据在预测健康相关表型方面提供的益处有限,但环境GWAS仍然是一种潜在的强大方法,可以识别与适应相关的个体新位点,特别是当与高密度基因分型相结合时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信